Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Virulence ; 13(1): 890-902, 2022 12.
Article En | MEDLINE | ID: mdl-35587156

Antibodies to SARS-CoV-2 are central to recovery and immunity from COVID-19. However, the relationship between disease severity and the repertoire of antibodies against specific SARS-CoV-2 epitopes an individual develops following exposure remains incompletely understood. Here, we studied seroprevalence of antibodies to specific SARS-CoV-2 and other betacoronavirus antigens in a well-annotated, community sample of convalescent and never-infected individuals obtained in August 2020. One hundred and twenty-four participants were classified into five groups: previously exposed but without evidence of infection, having no known exposure or evidence of infection, seroconverted without symptoms, previously diagnosed with symptomatic COVID-19, and recovered after hospitalization with COVID-19. Prevalence of IgGs specific to the following antigens was compared between the five groups: recombinant SARS-CoV-2 and betacoronavirus spike and nucleocapsid protein domains, peptides from a tiled array of 22-mers corresponding to the entire spike and nucleocapsid proteins, and peptides corresponding to predicted immunogenic regions from other proteins of SARS-CoV-2. Antibody abundance generally correlated positively with severity of prior illness. A number of specific immunogenic peptides and some that may be associated with milder illness or protection from symptomatic infection were identified. No convincing association was observed between antibodies to Receptor Binding Domain(s) (RBDs) of less pathogenic betacoronaviruses HKU1 or OC43 and COVID-19 severity. However, apparent cross-reaction with SARS-CoV RBD was evident and some predominantly asymptomatic individuals had antibodies to both MERS-CoV and SARS-CoV RBDs. Findings from this pilot study may inform development of diagnostics, vaccines, and therapeutic antibodies, and provide insight into viral pathogenic mechanisms.


COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Epitopes , Humans , Pilot Projects , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus
3.
PLoS One ; 10(9): e0138486, 2015.
Article En | MEDLINE | ID: mdl-26378449

Death Receptor 5 (DR5) agonists demonstrate anti-tumor activity in preclinical models but have yet to demonstrate robust clinical responses. A key limitation may be the lack of patient selection strategies to identify those most likely to respond to treatment. To overcome this limitation, we screened a DR5 agonist Nanobody across >600 cell lines representing 21 tumor lineages and assessed molecular features associated with response. High expression of DR5 and Casp8 were significantly associated with sensitivity, but their expression thresholds were difficult to translate due to low dynamic ranges. To address the translational challenge of establishing thresholds of gene expression, we developed a classifier based on ratios of genes that predicted response across lineages. The ratio classifier outperformed the DR5+Casp8 classifier, as well as standard approaches for feature selection and classification using genes, instead of ratios. This classifier was independently validated using 11 primary patient-derived pancreatic xenograft models showing perfect predictions as well as a striking linearity between prediction probability and anti-tumor response. A network analysis of the genes in the ratio classifier captured important biological relationships mediating drug response, specifically identifying key positive and negative regulators of DR5 mediated apoptosis, including DR5, CASP8, BID, cFLIP, XIAP and PEA15. Importantly, the ratio classifier shows translatability across gene expression platforms (from Affymetrix microarrays to RNA-seq) and across model systems (in vitro to in vivo). Our approach of using gene expression ratios presents a robust and novel method for constructing translatable biomarkers of compound response, which can also probe the underlying biology of treatment response.


Cell Lineage/genetics , Gene Expression Regulation, Neoplastic/genetics , Gene Expression/genetics , Pancreatic Neoplasms/genetics , Protein Biosynthesis/genetics , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics , Animals , Apoptosis/genetics , Caspase 8/genetics , Cell Line, Tumor , Humans , Mice , Xenograft Model Antitumor Assays/methods
4.
Cancer Res ; 74(12): 3294-305, 2014 Jun 15.
Article En | MEDLINE | ID: mdl-24747911

Tankyrases (TNKS) play roles in Wnt signaling, telomere homeostasis, and mitosis, offering attractive targets for anticancer treatment. Using unbiased combination screening in a large panel of cancer cell lines, we have identified a strong synergy between TNKS and MEK inhibitors (MEKi) in KRAS-mutant cancer cells. Our study uncovers a novel function of TNKS in the relief of a feedback loop induced by MEK inhibition on FGFR2 signaling pathway. Moreover, dual inhibition of TNKS and MEK leads to more robust apoptosis and antitumor activity both in vitro and in vivo than effects observed by previously reported MEKi combinations. Altogether, our results show how a novel combination of TNKS and MEK inhibitors can be highly effective in targeting KRAS-mutant cancers by suppressing a newly discovered resistance mechanism.


Antineoplastic Combined Chemotherapy Protocols/pharmacology , Proto-Oncogene Proteins/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Tankyrases/metabolism , ras Proteins/genetics , Acetamides/administration & dosage , Aminopyridines/administration & dosage , Aniline Compounds/administration & dosage , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Line, Tumor , Drug Synergism , Erlotinib Hydrochloride , Feedback, Physiological , Female , Humans , MAP Kinase Kinase Kinases/antagonists & inhibitors , MAP Kinase Kinase Kinases/metabolism , Mice , Mice, Nude , Morpholines/administration & dosage , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins p21(ras) , Pyrimidinones/administration & dosage , Quinazolines/administration & dosage , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Signal Transduction , Sulfonamides/administration & dosage , Tankyrases/antagonists & inhibitors , Thiazoles/administration & dosage , Xenograft Model Antitumor Assays
5.
J Biomol Screen ; 7(3): 275-80, 2002 Jun.
Article En | MEDLINE | ID: mdl-12097190

Retroviruses are useful for genetics studies to deliver genes that express proteins, peptides, and RNAs. Several steps, including DNA preparation, transfection, packaging, transduction, and assay, are required to execute screens using retroviral constructs. Unlike screens with purified components, whole-cell assays using retroviral constructs need a large number of steps with microplate manipulations. The nature of these steps, especially the involvement of cultured mammalian cells, limits the throughput of such screens. To improve the efficiency of genetic experiments with retroviral expression vectors, an automated system for retroviral screening in microplates was devised and tested. The system, called Somata, provides high throughputs and robust, reproducible performance.


Genetic Vectors/analysis , Retroviridae/metabolism , Flow Cytometry , Humans , Retroviridae/genetics
...