Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 49
1.
Sci Rep ; 14(1): 10409, 2024 05 06.
Article En | MEDLINE | ID: mdl-38710782

In transcatheter aortic valve implantation (TAVI), final device position may be affected by device interaction with the whole aortic landing zone (LZ) extending to ascending aorta. We investigated the impact of aortic LZ curvature and angulation on TAVI implantation depth, comparing short-frame balloon-expanding (BE) and long-frame self-expanding (SE) devices. Patients (n = 202) treated with BE or SE devices were matched based on one-to-one propensity score. Primary endpoint was the mismatch between the intended (HPre) and the final (HPost) implantation depth. LZ curvature and angulation were calculated based on the aortic centerline trajectory available from pre-TAVI computed tomography. Total LZ curvature ( k L Z , t o t ) and LZ angulation distal to aortic annulus ( α L Z , D i s t a l ) were greater in the SE compared to the BE group (P < 0.001 for both). In the BE group, HPost was significantly higher than HPre at both cusps (P < 0.001). In the SE group, HPost was significantly deeper than HPre only at the left coronary cusp (P = 0.013). At multivariate analysis, α L Z , D i s t a l was the only independent predictor (OR = 1.11, P = 0.002) of deeper final implantation depth with a cut-off value of 17.8°. Aortic LZ curvature and angulation significantly affected final TAVI implantation depth, especially in high stent-frame SE devices reporting, upon complete release, deeper implantation depth with respect to the intended one.


Aortic Valve Stenosis , Aortic Valve , Transcatheter Aortic Valve Replacement , Transcatheter Aortic Valve Replacement/methods , Humans , Male , Female , Aged, 80 and over , Aged , Aortic Valve/surgery , Aortic Valve/diagnostic imaging , Aortic Valve Stenosis/surgery , Tomography, X-Ray Computed , Aorta/diagnostic imaging , Aorta/surgery , Treatment Outcome , Heart Valve Prosthesis , Retrospective Studies
2.
Catheter Cardiovasc Interv ; 103(5): 741-750, 2024 Apr.
Article En | MEDLINE | ID: mdl-38451154

BACKGROUND: The GCA is a well performing device in terms of efficacy despite complex anatomies (aortic rim <5 mm and ASD diameter >17 mm) with a good safety profile. AIMS: To evaluate atrial septal defect (ASD) features impacting on right disc device thrombosis in patients who underwent Gore Cardioform ASD Occluder (GCA) implantation. METHODS: A total of 44 consecutive patients undergoing percutaneous ASD with GCA device from January 2020 to September 2022 at our tertiary care Center were evaluated. The minimum follow-up was 6 months. RESULTS: The patients were stratified in two groups according to a cut-off value of ASD diameter equal to 20 mm at sizing balloon, derived from ROC analysis (AUC = 0.894; p = 0.024). Baseline characteristics were comparable between groups in terms of age, sex, weight, height, and interatrial septum dimensions. Patients with ASD > 20 mm (n = 9) had a higher ASD/device dimension ratio, both at echocardiography (p = 0.009) and at sizing balloon (p = 0.001), longer fluoroscopic time (p = 0.022), and higher incidence of device thrombosis (0.006). Right disc thrombosis was observed in three patients of the ASD > 20 mm group, always in the inferior portion of the right disc. On univariate analysis, ASD diameter at sizing balloon (OR 1.360; p = 0.036) was the only positive predictor of device thrombosis. CONCLUSIONS: Right disc thrombosis of the GCA device may be under-recognized at follow-up, hence deserving clinical attention, especially in those patients with larger ASD diameters.


Heart Septal Defects, Atrial , Septal Occluder Device , Humans , Echocardiography, Transesophageal , Treatment Outcome , Cardiac Catheterization/adverse effects , Heart Septal Defects, Atrial/diagnostic imaging , Heart Septal Defects, Atrial/therapy
3.
JACC Case Rep ; 29(6): 102247, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38549848

We describe a rare and extremely challenging case of transcatheter pulmonary valve implantation in repaired tetralogy of Fallot and anomalous origin of the left main coronary artery from the right coronary sinus. Procedural planning based on advanced multimodality imaging and 3-dimensional technology proved to be the key to procedural success.

5.
Heart ; 110(4): 235-244, 2024 Jan 29.
Article En | MEDLINE | ID: mdl-37487694

Although survival has significantly improved in the last four decades, the diagnosis of Ebstein's anomaly is still associated with a 20-fold increased risk of mortality, which generally drops after neonatal period and increases subtly thereafter. With increasing age of presentation, appropriate timing of intervention is challenged by a wide spectrum of disease and paucity of data on patient-tailored interventional strategies. The present review sought to shed light on the wide grey zone of post-neonatal Ebstein's manifestations, highlighting current gaps and achievements in knowledge for adequate risk assessment and appropriate therapeutic strategy.A 'wait-and-see' approach has been adopted in many circumstances, though its efficacy is now questioned by the awareness that Ebstein's anomaly is not a benign disease, even when asymptomatic. Moreover, older age at intervention showed a negative impact on post-surgical outcome.In order to tackle the extreme heterogeneity of Ebstein's anomaly, this review displays the multimodality imaging assessment necessary for a proper anatomical classification and the multidisciplinary approach needed for a comprehensive risk stratification and monitoring strategy. Currently available predictors of clinical outcome are summarised for both operated and unoperated patients, with the aim of supporting the decisional process on the choice of appropriate therapy and optimal timing for intervention.


Ebstein Anomaly , Infant, Newborn , Child , Adult , Humans , Ebstein Anomaly/diagnostic imaging , Ebstein Anomaly/surgery , Risk Assessment , Multimodal Imaging
7.
Comput Biol Med ; 163: 107147, 2023 09.
Article En | MEDLINE | ID: mdl-37329622

Accurate planning of transcatheter aortic valve implantation (TAVI) is important to minimize complications, and it requires anatomic evaluation of the aortic root (AR), commonly performed through 3D computed tomography (CT) image analysis. Currently, there is no standard automated solution for this process. Two convolutional neural networks with 3D U-Net architectures (model 1 and model 2) were trained on 310 CT scans for AR analysis. Model 1 performs AR segmentation and model 2 identifies the aortic annulus and sinotubular junction (STJ) contours. After training, the two models were integrated into a fully automated pipeline for geometric analysis of the AR. Results were validated against manual measurements of 178 TAVI candidates. The trained CNNs segmented the AR, annulus, and STJ effectively, resulting in mean Dice scores of 0.93 for the AR, and mean surface distances of 0.73 mm and 0.99 mm for the annulus and STJ, respectively. Automatic measurements were in good agreement with manual annotations, yielding annulus diameters that differed by 0.52 [-2.96, 4.00] mm (bias and 95% limits of agreement for manual minus algorithm). Evaluating the area-derived diameter, bias, and limits of agreement were 0.07 [-0.25, 0.39] mm. STJ and sinuses diameters computed by the automatic method yielded differences of 0.16 [-2.03, 2.34] and 0.1 [-2.93, 3.13] mm, respectively. The proposed tool is a fully automatic solution to quantify morphological biomarkers for pre-TAVI planning. The method was validated against manual annotation from clinical experts and showed to be quick and effective in assessing AR anatomy, with potential for time and cost savings.


Aortic Valve Stenosis , Deep Learning , Transcatheter Aortic Valve Replacement , Humans , Transcatheter Aortic Valve Replacement/methods , Aortic Valve/diagnostic imaging , Aortic Valve/surgery , Aortic Valve Stenosis/surgery , Aorta, Thoracic , Tomography, X-Ray Computed/methods
8.
Front Cardiovasc Med ; 10: 1103751, 2023.
Article En | MEDLINE | ID: mdl-37025678

The total kinetic energy (KE) of blood can be decomposed into mean KE (MKE) and turbulent KE (TKE), which are associated with the phase-averaged fluid velocity field and the instantaneous velocity fluctuations, respectively. The aim of this study was to explore the effects of pharmacologically induced stress on MKE and TKE in the left ventricle (LV) in a cohort of healthy volunteers. 4D Flow MRI data were acquired in eleven subjects at rest and after dobutamine infusion, at a heart rate that was ∼60% higher than the one in rest conditions. MKE and TKE were computed as volume integrals over the whole LV and as data mapped to functional LV flow components, i.e., direct flow, retained inflow, delayed ejection flow and residual volume. Diastolic MKE and TKE increased under stress, in particular at peak early filling and peak atrial contraction. Augmented LV inotropy and cardiac frequency also caused an increase in direct flow and retained inflow MKE and TKE. However, the TKE/KE ratio remained comparable between rest and stress conditions, suggesting that LV intracavitary fluid dynamics can adapt to stress conditions without altering the TKE to KE balance of the normal left ventricle at rest.

9.
J Clin Med ; 12(1)2023 Jan 01.
Article En | MEDLINE | ID: mdl-36615133

Post-ischemic left ventricular (LV) remodeling is a biologically complex process involving myocardial structure, LV shape, and function, beginning early after myocardial infarction (MI) and lasting until 1 year. Adverse remodeling is a post-MI maladaptive process that has been associated with long-term poor clinical outcomes. Cardiac Magnetic Resonance (CMR) is the best tool to define adverse remodeling because of its ability to accurately measure LV end-diastolic and end-systolic volumes and their variation over time and to characterize the underlying myocardial changes. Therefore, CMR is the gold standard method to assess in vivo myocardial infarction extension and to detect the presence of microvascular obstruction and intramyocardial hemorrhage, both associated with adverse remodeling. In recent times, new CMR quantitative biomarkers emerged as predictive of post-ischemic adverse remodeling, such as T1 mapping, myocardial strain, and 4D flow. Additionally, CMR T1 mapping imaging may depict infarcted tissue and assess diffuse myocardial fibrosis by using surrogate markers such as extracellular volume fraction, which may predict functional recovery or risk stratification of remodeling. Finally, there is emerging evidence supporting the utility of intracavitary blood flow kinetic energy and hemodynamic features assessed by the 4D flow CMR technique as early predictors of remodeling.

10.
J Endovasc Ther ; 30(5): 756-768, 2023 10.
Article En | MEDLINE | ID: mdl-35588222

PURPOSE: Displacement forces (DFs) identify hostile landing zones for stent graft deployment in thoracic endovascular aortic repair (TEVAR). However, their use in TEVAR planning is hampered by the need for time-expensive computational fluid dynamics (CFD). We propose a novel fast-approximate computation of DFs merely exploiting aortic arch anatomy, as derived from the computed tomography (CT) and a measure of central aortic pressure. MATERIALS AND METHODS: We tested the fast-approximate approach against CFD gold-standard in 34 subjects with the "bovine" aortic arch variant. For each dataset, a 3-dimensional (3D) model of the aortic arch lumen was reconstructed from computed tomography angiography and CFD then employed to compute DFs within the aortic proximal landing zones. To quantify fast-approximate DFs, the wall shear stress contribution to the DF was neglected and blood pressure space-distribution was averaged on the entire aortic wall to reliably approximate the patient-specific central blood pressure. Also, DF values were normalized on the corresponding proximal landing zone area to obtain the equivalent surface traction (EST). RESULTS: Fast-approximate approach consistently reflected (r2=0.99, p<0.0001) the DF pattern obtained by CFD, with a -1.1% and 0.7° bias in DFs magnitude and orientation, respectively. The normalized EST progressively increased (p<0.0001) from zone 0 to zone 3 regardless of the type of arch, with proximal landing zone 3 showing significantly greater forces than zone 2 (p<0.0001). Upon DF normalization to the corresponding aortic surface, fast-approximate EST was decoupled in blood pressure and a dimensionless shape vector (S) reflecting aortic arch morphology. S showed a zone-specific pattern of orientation and proved a valid biomechanical blueprint of DF impact on the thoracic aortic wall. CONCLUSION: Requiring only a few seconds and quantifying clinically relevant biomechanical parameters of proximal landing zones for arch TEVAR, our method suits the real preoperative decision-making process. It paves the way toward analyzing large population of patients and hence to define threshold values for a future patient-specific preoperative TEVAR planning.


Blood Vessel Prosthesis Implantation , Endovascular Procedures , Humans , Aorta, Thoracic/diagnostic imaging , Aorta, Thoracic/surgery , Blood Vessel Prosthesis , Blood Vessel Prosthesis Implantation/adverse effects , Endovascular Procedures/adverse effects , Endovascular Procedures/methods , Treatment Outcome , Stents
11.
J Thorac Cardiovasc Surg ; 165(4): 1418-1429.e4, 2023 04.
Article En | MEDLINE | ID: mdl-33781593

OBJECTIVE: The study objective was to elucidate the mechanisms of left ventricle functional recovery in terms of endocardial contractility and synchronicity after surgical ventricular reconstruction. METHODS: Real-time 3-dimensional transthoracic echocardiography was performed on 20 patients with anterior left ventricle remodeling and ischemic heart failure before surgical ventricular reconstruction and at 6-month follow-up, and on 15 healthy controls matched by age and body surface area. Real-time 3-dimensional transthoracic echocardiography datasets were analyzed through TomTec software (4D LV-Analysis; TomTec Imaging Systems GmbH, Unterschleissheim, Germany): Left ventricle volumes, ejection fraction, and global longitudinal strain were computed; the time-dependent endocardial surface yielded by 3-dimensional speckle-tracking echocardiography was postprocessed through in-house software to quantify local systolic minimum principal strain as a measure of fiber shortening and mechanical dispersion as a measure of fiber synchronicity. RESULTS: Compared with controls, patients with heart failure before surgical ventricular reconstruction showed lower ejection fraction (P < .0001) and significantly impaired mechanical dispersion (P < .0001) and minimum principal strain (P < .0001); the latter worsened progressively from left ventricle base to apex. After surgical ventricular reconstruction, global longitudinal strain improved from -6.7% to -11.3% (P < .0001); mechanical dispersion decreased in every left ventricle region (P ≤ .017) and mostly in the basal region, where computed mechanical dispersion values were comparable to physiologic values (P ≥ .046); minimum principal strain improved mostly in the basal region, changing from -16.6% to -22.3% (P = .0027). CONCLUSIONS: At 6-month follow-up, surgical ventricular reconstruction was associated with significant recovery in global left ventricle function, improved mechanical dispersion indicating a more synchronous left ventricle contraction, and improved left ventricle fiber shortening mostly in the basal region, suggesting the major role of the remote myocardium in enhancing left ventricle functional recovery.


Echocardiography, Three-Dimensional , Heart Failure , Ventricular Dysfunction, Left , Humans , Ventricular Function, Left/physiology , Echocardiography/methods , Echocardiography, Three-Dimensional/methods , Heart Failure/diagnostic imaging , Heart Failure/surgery , Heart Ventricles/diagnostic imaging , Heart Ventricles/surgery , Stroke Volume/physiology , Reproducibility of Results
12.
Quant Imaging Med Surg ; 12(7): 3515-3527, 2022 Jul.
Article En | MEDLINE | ID: mdl-35782271

Background: Performance and durability of arterio-venous grafts depend on their ability to mimic the mechanical behavior of the anastomized blood vessels. To select the most suitable synthetic graft, in vivo evaluation of the radial deformability of peripheral arteries and veins could be crucial; however, a standardized non-invasive strategy is still missing. Herein, we sought to define a novel and user-friendly clinical protocol for in vivo assessment of the arm vessel deformability. Methods: A dedicated protocol, applied on 30 volunteers, was specifically designed to estimate both compliance and distensibility of the brachial and radial arteries, and of the basilic and cephalic veins. Bi-dimensional ultrasound imaging was used to acquire cross-sectional areas (CSAs) of arteries in clinostatic configuration, and CSAs of veins combining clinostatic and orthostatic configurations. Arterial pulse pressure was measured with a digital sphygmomanometer, while venous hydrostatic pressure was derived from the arm length in orthostatic configuration. Results: For each participant, all CSAs were successfully extracted from ultrasound images. The basilic vein and the radial artery exhibited the largest (21.5±8.9 mm2) and the smallest (3.4±1.0 mm2) CSAs, respectively; CSA measurements were highly repeatable (Bland-Altman bias <10% and Pearson correlation ≥0.90, for both arteries and veins). In veins, compliance and distensibility were higher than in arteries; compliance was significantly higher (P<0.0001) in the brachial than in the radial artery (3.52×10-4 vs. 1.3×10-4 cm2/mmHg); it was three times larger in basilic veins than in cephalic veins (17.4×10-4 vs. 5.6×10-4 cm2/mmHg, P<0.0001). Conclusions: The proposed non-invasive protocol proved feasible, effective and adequate for daily clinical practice, allowing for the estimation of patient-specific compliance and distensibility of peripheral arteries and veins. If further extended, it may contribute to the fabrication of biohybrid arterio-venous grafts, paving the way towards patient-tailored solutions for vascular access.

13.
Int J Cardiol ; 362: 183-189, 2022 09 01.
Article En | MEDLINE | ID: mdl-35504452

BACKGROUND: Left atrial (LA) function can be effectively assessed by measuring longitudinal LA strain (LAS) via two-dimensional speckle tracking echocardiography (2DSTE). Here, we test 2DSTE-based LAS as marker of different left ventricle (LV) remodeling patterns and as prognostic index in ischemic heart failure (HF) candidates to surgical ventricular reconstruction. METHODS: We retrospectively considered ischemic HF patients with anterior (group A, n=130) or posterior (group P, n=48) LV remodeling. Based on 2D ultrasound, LV and LA morpho-functional parameters were quantified including reservoir (LASRes), conduit (LASCond) and booster (LASBoost) LAS. We tested their capability to discriminate between groups A and P, and their group-specific prognostic significance for the composite end-point of death or HF re-hospitalization at follow-up (mean follow-up time=40 months, range 3-101 months). RESULTS: Group A and group P displayed similar end-diastolic (p=0.89) and end-systolic (p=0.33) LV volume index, and LA volume index LAVi (p=0.44) corrected for the degree of mitral regurgitation. As compared to group P, group A revealed a significant reduction in LASBoost (9.2±0.4% vs. 11.1±0.7%, p=0.04) and a non-significant reduction in LASRes (16.9±0.7% vs. 19.3±1.1%, p=0.06). Kaplan-Meier curves showed that the median LASRes and LASBoost values effectively stratified patients based on their prognosis in the overall study population (Log-rank p=0.002 and Log_rank p<0.0001) and in group A, where the association was stronger for LASBoost (Log-rank p<0.001) than for LASRes (Log-rank p=0.013). CONCLUSIONS: 2DSTE-based LAS assessment is affordable, repeatable and non-invasive, and could add clinically-relevant mechanistic insight and prognostic value in the stratification of ischemic HF patients.


Heart Atria , Heart Failure , Heart Atria/diagnostic imaging , Heart Failure/diagnostic imaging , Humans , Prognosis , Retrospective Studies , Ultrasonography , Ventricular Remodeling
14.
Eur Heart J ; 43(28): 2672-2684, 2022 07 21.
Article En | MEDLINE | ID: mdl-35608227

Congenital heart disease (CHD) is often comprised of complex three-dimensional (3D) anatomy that must be well understood to assess the pathophysiological consequences and guide therapy. Thus, detailed cardiac imaging for early detection and planning of interventional and/or surgical treatment is paramount. Advanced technologies have revolutionized diagnostic and therapeutic practice in CHD, thus playing an increasing role in its management. Traditional reliance on standard imaging modalities including echocardiography, cardiac computed tomography (CT) and magnetic resonance imaging (MRI) has been augmented by the use of recent technologies such as 3D printing, virtual reality, augmented reality, computational modelling, and artificial intelligence because of insufficient information available with these standard imaging techniques. This has created potential opportunities of incorporating these technologies into routine clinical practice to achieve the best outcomes through delivery of personalized medicine. In this review, we provide an overview of these evolving technologies and a new approach enabling physicians to better understand their real-world application in adult CHD as a prelude to clinical workflow implementation.


Heart Defects, Congenital , Virtual Reality , Adult , Artificial Intelligence , Heart , Heart Defects, Congenital/surgery , Humans , Printing, Three-Dimensional
15.
J Med Eng Technol ; 46(3): 209-219, 2022 Apr.
Article En | MEDLINE | ID: mdl-35060819

We investigated the effect of the design of bioprosthetic pericardial valves on the downstream fluid flow pattern through four-dimensional flow magnetic resonance imaging (4D Flow). A dedicated in vitro test bench, including a paradigmatic aortic root phantom, was used to compare, under steady flow conditions, three commercially used pericardial bioprostheses (TrifectaTM, Carpentier-Edwards PERIMOUNT Magna, Crown PRT®), selecting the two smallest and comparable valve sizes. In-house 4D Flow post-processing provided the downstream flow pattern of velocity, the velocity profile at vena contracta, its effective orifice area (EOA) and the corresponding hydraulic diameter (DH). Trifecta reported the lowest peak of velocity for both the tested sizes, with vena contracta position being the most proximal to the free margin of leaflets. Conversely, in both Crown and Magna, jet flow continued to increase its downstream velocity, resulting in a farther position of vena contracta. EOA shape was trilobal for Magna, triangular for Crown and circular for Trifecta, the last one maximising EOA. The percentage of nominal luminal area effectively exploited by the flow was largely above 80% in Trifecta, below 75% in Crown and below 70% in Magna. Hence, the design of pericardial bioprostheses directly impacts on the downstream flow field pattern and its fluid dynamic performance.


Heart Valve Prosthesis , Aortic Valve , Hemodynamics , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Prosthesis Design
16.
J Magn Reson Imaging ; 56(4): 1157-1170, 2022 Oct.
Article En | MEDLINE | ID: mdl-35075711

BACKGROUND: Time-resolved three-directional velocity-encoded (4D flow) magnetic resonance imaging (MRI) enables the quantification of left ventricular (LV) intracavitary fluid dynamics and energetics, providing mechanistic insight into LV dysfunctions. Before becoming a support to diagnosis and patient stratification, this analysis should prove capable of discriminating between clearly different LV derangements. PURPOSE: To investigate the potential of 4D flow in identifying fluid dynamic and energetics derangements in ischemic and restrictive LV cardiomyopathies. STUDY TYPE: Prospective observational study. POPULATION: Ten patients with post-ischemic cardiomyopathy (ICM), 10 patients with cardiac light-chain cardiac amyloidosis (AL-CA), and 10 healthy controls were included. FIELD STRENGTH/SEQUENCE: 1.5 T/balanced steady-state free precession cine and 4D flow sequences. ASSESSMENT: Flow was divided into four components: direct flow (DF), retained inflow, delayed ejection flow, and residual volume (RV). Demographics, LV morphology, flow components, global and regional energetics (volume-normalized kinetic energy [KEV ] and viscous energy loss [ELV ]), and pressure-derived hemodynamic force (HDF) were compared between the three groups. STATISTICAL TESTS: Intergroup differences in flow components were tested by one-way analysis of variance (ANOVA); differences in energetic variables and peak HDF were tested by two-way ANOVA. A P-value of <0.05 was considered significant. RESULTS: ICM patients exhibited the following statistically significant alterations vs. controls: reduced KEV , mostly in the basal region, in systole (-44%) and in diastole (-37%); altered flow components, with reduced DF (-33%) and increased RV (+26%); and reduced basal-apical HDF component on average by 63% at peak systole. AL-CA patients exhibited the following alterations vs. controls: significantly reduced KEV at the E-wave peak in the basal segment (-34%); albeit nonstatistically significant, increased peaks and altered time-course of the HDF basal-apical component in diastole and slightly reduced HDF components in systole. DATA CONCLUSION: The analysis of multiple 4D flow-derived parameters highlighted fluid dynamic alterations associated with systolic and diastolic dysfunctions in ICM and AL-CA patients, respectively. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 3.


Cardiomyopathy, Restrictive , Hydrodynamics , Heart Ventricles/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging, Cine/methods , Stroke Volume , Ventricular Function, Left
17.
J Digit Imaging ; 35(2): 226-239, 2022 04.
Article En | MEDLINE | ID: mdl-35083618

Feasibility assessment and planning of thoracic endovascular aortic repair (TEVAR) require computed tomography (CT)-based analysis of geometric aortic features to identify adequate landing zones (LZs) for endograft deployment. However, no consensus exists on how to take the necessary measurements from CT image data. We trained and applied a fully automated pipeline embedding a convolutional neural network (CNN), which feeds on 3D CT images to automatically segment the thoracic aorta, detects proximal landing zones (PLZs), and quantifies geometric features that are relevant for TEVAR planning. For 465 CT scans, the thoracic aorta and pulmonary arteries were manually segmented; 395 randomly selected scans with the corresponding ground truth segmentations were used to train a CNN with a 3D U-Net architecture. The remaining 70 scans were used for testing. The trained CNN was embedded within computational geometry processing pipeline which provides aortic metrics of interest for TEVAR planning. The resulting metrics included aortic arch centerline radius of curvature, proximal landing zones (PLZs) maximum diameters, angulation, and tortuosity. These parameters were statistically analyzed to compare standard arches vs. arches with a common origin of the innominate and left carotid artery (CILCA). The trained CNN yielded a mean Dice score of 0.95 and was able to generalize to 9 pathological cases of thoracic aortic aneurysm, providing accurate segmentations. CILCA arches were characterized by significantly greater angulation (p = 0.015) and tortuosity (p = 0.048) in PLZ 3 vs. standard arches. For both arch configurations, comparisons among PLZs revealed statistically significant differences in maximum zone diameters (p < 0.0001), angulation (p < 0.0001), and tortuosity (p < 0.0001). Our tool allows clinicians to obtain objective and repeatable PLZs mapping, and a range of automatically derived complex aortic metrics.


Blood Vessel Prosthesis Implantation , Deep Learning , Endovascular Procedures , Aorta, Thoracic/diagnostic imaging , Aorta, Thoracic/surgery , Aortography/methods , Blood Vessel Prosthesis , Computed Tomography Angiography , Endovascular Procedures/methods , Humans , Retrospective Studies , Tomography, X-Ray Computed , Treatment Outcome
18.
Int J Cardiovasc Imaging ; 38(1): 211-221, 2022 Jan.
Article En | MEDLINE | ID: mdl-34448067

To assess the impact of regurgitant jet direction on left ventricular function and intraventricular hemodynamics in asymptomatic patients with bicuspid aortic valve (BAV) and mild aortic valve regurgitation (AR), using cardiac magnetic resonance (CMR) feature tracking and 4D flow imaging. Fifty BAV individuals were retrospectively selected: 15 with mild AR and posterior regurgitation jet (Group-PJ), 15 with regurgitant jet in other directions (Group-nPJ) and 20 with no regurgitation (Controls). CMR protocol included cine steady state free precession (SSFP) sequences and 4D Flow imaging covering the entire left ventricle (LV) cavity and the aortic root. Cine-SSFP images were analyzed to assess LV volumes, longitudinal and circumferential myocardial strain. Circumferential and longitudinal peak diastolic strain rate (PDSR) and peak diastolic velocity (PDV) were reduced in group PJ if compared to group nPJ and control group (PDSR = 1.10 ± 0.2 1/s vs. 1.34 ± 0.5 1/s vs. 1.53 ± 0.3 1/s, p:0.001 and 0.68 ± 0.2 1/s vs. 1.17 ± 0.2 1/s vs. 1.05 ± 0.4 1/s ; p < 0.001, PDV = - 101.6 ± 28.1 deg/s vs. - 201.4 ± 85.9 deg/s vs. - 221.6 ± 67.1 deg/s; p < 0.001 and - 28.1 ± 8 mm/s vs. - 38.9 ± 11.1 mm/s vs. - 43.6 ± 14.3 mm/s, p < 0.001, respectively), whereas no differences have been found in systolic strain values. 4D Flow images (available only in 9 patients) showed deformation of diastolic transmitral streamlines direction in group PJ compared to other groups. In BAV patients with mild AR, the posterior direction of the regurgitant jet may hamper the complete mitral valve opening, disturbing transmitral flow and slowing the LV diastolic filling.


Aortic Valve Insufficiency , Bicuspid Aortic Valve Disease , Mitral Valve Insufficiency , Aortic Valve/diagnostic imaging , Aortic Valve Insufficiency/diagnostic imaging , Aortic Valve Insufficiency/etiology , Humans , Magnetic Resonance Spectroscopy , Mitral Valve/diagnostic imaging , Mitral Valve Insufficiency/diagnostic imaging , Mitral Valve Insufficiency/etiology , Predictive Value of Tests , Retrospective Studies
19.
Front Cardiovasc Med ; 9: 1076359, 2022.
Article En | MEDLINE | ID: mdl-36704466

An 8-year-old girl, diagnosed with mid-aortic syndrome (MAS) at the age of 2 months and under antihypertensive therapy, presented with severe systemic hypertension (>200/120 mmHg). Computed tomography (CT) examination revealed aortic aneurysm between severe stenoses at pre- and infra-renal segments, and occlusion of principal splanchnic arteries with peripheral collateral revascularization. Based on CT imaging, preoperative three-dimensional (3D) anatomy was reconstructed to assess aortic dimensions and a dedicated in vitro planning platform was designed to investigate the feasibility of a stenting procedure under fluoroscopic guidance. The in vitro system was designed to incorporate a translucent flexible 3D-printed patient-specific model filled with saline. A covered 8-zig 45-mm-long Cheatham-Platinum (CP) stent and a bare 8-zig, 34-mm-long CP stent were implanted with partial overlap to treat the stenoses (global peak-to-peak pressure gradient > 60 mmHg), excluding the aneurysm and avoiding risk of renal arteries occlusion. Percutaneous procedure was successfully performed with no residual pressure gradient and exactly replicating the strategy tested in vitro. Also, as investigated on the 3D-printed model, additional angioplasty was feasible across the frames of the stent to improve bilateral renal flow. Postoperative systemic pressure significantly reduced (130/70 mmHg) as well as dosage of antihypertensive therapy. This is the first report demonstrating the use of a 3D-printed model to effectively plan percutaneous intervention in a complex pediatric MAS case: taking full advantage of the combined use of a patient-specific 3D model and a dedicated in vitro platform, feasibility of the stenting procedure was successfully tested during pre-procedural assessment. Hence, use of patient-specific 3D-printed models and in vitro dedicated platforms is encouraged to assist pre-procedural planning and personalize treatment, thus enhancing intervention success.

20.
Circ Arrhythm Electrophysiol ; 14(11): e010004, 2021 11.
Article En | MEDLINE | ID: mdl-34693720

BACKGROUND: Brugada syndrome (BrS) is considered a purely electrical disease with variable electrical substrates. Variable rates of mechanical abnormalities have been also reported. Whether exists a link between electrical and mechanical abnormalities has never been previously explored. This investigational physiopathological study aimed to determine the relationship between the substrate size/location, as exposed by ajmaline provocation, and the severity of mechanical abnormalities, as assessed by cardiac magnetic resonance in patients with BrS. METHODS: Twenty-four consecutive high-risk patients with BrS (mean age, 38±11 years, 17 males), presenting with malignant syncope and documented polymorphic ventricular tachycardia/ventricular fibrillation, and candidate to implantable cardioverter defibrillator implantation, underwent cardiac magnetic resonance and electroanatomic maps. During each examination, ajmaline test (1 mg/kg over 5 minutes) was performed. Cardiac magnetic resonance findings were compared with 24 age, sex, and body surface area-matched controls. In patients with BrS, the correlation between the electrical substrate extent and right ventricular regional mechanical abnormalities before/after ajmaline challenge was analyzed. RESULTS: After ajmaline, patients with BrS showed a reduction of right ventricular (RV) ejection fraction (P<0.001), associated with decreased transversal displacement (U, P<0.001) and longitudinal strain (ε, P<0.001) localized at RV outflow tract. In patients with BrS significant preajmaline/postajmaline changes of transversal displacement (ΔU, P<0.001) and longitudinal strain (Δε, P<0.001) were found. In the control group, no mechanical changes were observed after ajmaline. The electrical substrate consistently increased after ajmaline from 1.7±2.8 cm2 to 14.2±7.3 cm2 (P<0.001), extending from the RV outflow tract to the neighboring segments of the RV anterior wall. Postajmaline RV ejection fraction inversely correlated with postajmaline substrate extent (r=-0.830, P<0.001). In patients with BrS and normal controls, cardiac magnetic resonance detected neither myocardial fibrosis nor RV outflow tract morphological abnormalities. CONCLUSIONS: BrS is a dynamic RV electromechanical disease, where functional abnormalities correlate with the maximal extent of the substrate size. These findings open new lights on the physiopathology of the disease. Registration: URL: https://clinicaltrial.gov; Unique identifier: NCT03524079.


Brugada Syndrome/diagnosis , Electrocardiography/methods , Heart Ventricles/diagnostic imaging , Magnetic Resonance Imaging, Cine/methods , Adult , Brugada Syndrome/physiopathology , Female , Follow-Up Studies , Heart Ventricles/physiopathology , Humans , Male , Retrospective Studies
...