Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genetics ; 225(1)2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37440478

RESUMEN

Niemann-Pick type C (NP-C) disease is a rare lysosomal storage disease caused by mutations in NPC1 (95% cases) or NPC2 (5% cases). These proteins function together in cholesterol egress from the lysosome, whereby upon mutation, cholesterol and other lipids accumulate causing major pathologies. However, it is not fully understood how cholesterol is transported from NPC1 residing at the lysosomal membrane to the endoplasmic reticulum (ER) and plasma membrane. The yeast ortholog of NPC1, Niemann-Pick type C-related protein-1 (Ncr1), functions similarly to NPC1; when transfected into a mammalian cell lacking NPC1, Ncr1 rescues the diagnostic hallmarks of cholesterol and sphingolipid accumulation. Here, we aimed to identify and characterize protein-protein interactions (PPIs) with the yeast Ncr1 protein. A genome-wide split-ubiquitin membrane yeast two-hybrid (MYTH) protein interaction screen identified 11 ER membrane-localized, full-length proteins interacting with Ncr1 at the lysosomal/vacuolar membrane. These highlight the importance of ER-vacuole membrane interface and include PPIs with the Cyb5/Cbr1 electron transfer system, the ceramide synthase complex, and the Sec61/Sbh1 protein translocation complex. These PPIs were not detected in a sterol auxotrophy condition and thus depend on normal sterol metabolism. To provide biological context for the Ncr1-Cyb5 PPI, a yeast strain lacking this PPI (via gene deletions) exhibited altered levels of sterols and sphingolipids including increased levels of glucosylceramide that mimic NP-C disease. Overall, the results herein provide new physical and genetic interaction models to further use the yeast model of NP-C disease to better understand human NP-C disease.


Asunto(s)
Enfermedad de Niemann-Pick Tipo C , Saccharomyces cerevisiae , Animales , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Enfermedad de Niemann-Pick Tipo C/genética , Enfermedad de Niemann-Pick Tipo C/metabolismo , Receptor 1 Gatillante de la Citotoxidad Natural/metabolismo , Proteínas/genética , Colesterol , Esteroles/metabolismo , Mamíferos
2.
J Lipid Res ; 61(7): 972-982, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32457038

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has resulted in the death of more than 328,000 persons worldwide in the first 5 months of 2020. Herculean efforts to rapidly design and produce vaccines and other antiviral interventions are ongoing. However, newly evolving viral mutations, the prospect of only temporary immunity, and a long path to regulatory approval pose significant challenges and call for a common, readily available, and inexpensive treatment. Strategic drug repurposing combined with rapid testing of established molecular targets could provide a pause in disease progression. SARS-CoV-2 shares extensive structural and functional conservation with SARS-CoV-1, including engagement of the same host cell receptor (angiotensin-converting enzyme 2) localized in cholesterol-rich microdomains. These lipid-enveloped viruses encounter the endosomal/lysosomal host compartment in a critical step of infection and maturation. Niemann-Pick type C (NP-C) disease is a rare monogenic neurodegenerative disease caused by deficient efflux of lipids from the late endosome/lysosome (LE/L). The NP-C disease-causing gene (NPC1) has been strongly associated with viral infection, both as a filovirus receptor (e.g., Ebola) and through LE/L lipid trafficking. This suggests that NPC1 inhibitors or NP-C disease mimetics could serve as anti-SARS-CoV-2 agents. Fortunately, there are such clinically approved molecules that elicit antiviral activity in preclinical studies, without causing NP-C disease. Inhibition of NPC1 may impair viral SARS-CoV-2 infectivity via several lipid-dependent mechanisms, which disturb the microenvironment optimum for viral infectivity. We suggest that known mechanistic information on NPC1 could be utilized to identify existing and future drugs to treat COVID-19.


Asunto(s)
Anticolesterolemiantes/uso terapéutico , Antivirales/uso terapéutico , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Péptidos y Proteínas de Señalización Intracelular/genética , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Pandemias , Neumonía Viral/tratamiento farmacológico , Androstenos/uso terapéutico , Enzima Convertidora de Angiotensina 2 , Betacoronavirus/metabolismo , Betacoronavirus/patogenicidad , COVID-19 , Colesterol/metabolismo , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/epidemiología , Reposicionamiento de Medicamentos/métodos , Humanos , Hidroxicloroquina/uso terapéutico , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Lisosomas/virología , Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C/genética , Enfermedad de Niemann-Pick Tipo C/metabolismo , Enfermedad de Niemann-Pick Tipo C/patología , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/diagnóstico , Neumonía Viral/epidemiología , Unión Proteica , Receptores Virales/antagonistas & inhibidores , Receptores Virales/genética , Receptores Virales/metabolismo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
3.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(8): 1109-1123, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31002946

RESUMEN

Niemann-Pick type C (NP-C) disease is a rare and fatal neurodegenerative disease typified by aberrations in intracellular lipid transport. Cholesterol and other lipids accumulate in the late endosome/lysosome of all diseased cells thereby causing neuronal and visceral atrophy. A cure for NP-C remains elusive despite the extensive molecular advances emanating from the identification of the primary genetic defect in 1997. Penetration of the blood-brain barrier and efficacy in the viscera are prerequisites for effective therapy, however the rarity of NP-C disease is the major impediment to progress. Disease diagnosis is challenging and establishment of appropriate test populations for clinical trials difficult. Fortunately, disease models that span the diversity of microbial and metazoan life have been utilized to advance the quest for a therapy. The complexity of lipid storage in this disorder and in the model systems, has led to multiple theories on the primary disease mechanism and consequently numerous and varied proposed interventions. Here, we conduct an evaluation of these studies.


Asunto(s)
Investigación Biomédica , Enfermedad de Niemann-Pick Tipo C , Animales , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Modelos Biológicos , Enfermedades Neurodegenerativas , Enfermedad de Niemann-Pick Tipo C/diagnóstico , Enfermedad de Niemann-Pick Tipo C/etiología , Enfermedad de Niemann-Pick Tipo C/historia , Enfermedad de Niemann-Pick Tipo C/terapia , Enfermedades Raras
4.
Microb Cell ; 4(9): 278-293, 2017 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-28913343

RESUMEN

Lysosomal storage diseases (LSDs) arise from monogenic deficiencies in lysosomal proteins and pathways and are characterized by a tissue-wide accumulation of a vast variety of macromolecules, normally specific to each genetic lesion. Strategies for treatment of LSDs commonly depend on reduction of the offending metabolite(s) by substrate depletion or enzyme replacement. However, at least 44 of the ~50 LSDs are currently recalcitrant to intervention. Murine models have provided significant insights into our understanding of many LSD mechanisms; however, these systems do not readily permit phenotypic screening of compound libraries, or the establishment of genetic or gene-environment interaction networks. Many of the genes causing LSDs are evolutionarily conserved, thus facilitating the application of models system to provide additional insight into LSDs. Here, we review the utility of yeast models of 3 LSDs: Batten disease, cystinosis, and Niemann-Pick type C disease. We will focus on the translation of research from yeast models into human patients suffering from these LSDs. We will also discuss the use of yeast models to investigate the penetrance of LSDs, such as Niemann-Pick type C disease, into more prevalent syndromes including viral infection and obesity.

5.
J Biol Chem ; 292(11): 4395-4410, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-28031458

RESUMEN

Niemann-Pick type C (NP-C) disease is a fatal genetic lipidosis for which there is no Food and Drug Administration (FDA)-approved therapy. Vorinostat, an FDA-approved inhibitor of histone deacetylases, ameliorates lysosomal lipid accumulation in cultured NP-C patient fibroblasts. To assess the therapeutic potential of histone deacetylase inhibition, we pursued these in vitro observations in two murine models of NP-C disease. Npc1nmf164 mice, which express a missense mutation in the Npc1 gene, were treated intraperitoneally, from weaning, with the maximum tolerated dose of vorinostat (150 mg/kg, 5 days/week). Disease progression was measured via gene expression, liver function and pathology, serum and tissue lipid levels, body weight, and life span. Transcriptome analyses of treated livers indicated multiple changes consistent with reversal of liver dysfunction that typifies NP-C disease. Significant improvements in liver pathology and function were achieved by this treatment regimen; however, NPC1 protein maturation and levels, disease progression, weight loss, and animal morbidity were not detectably altered. Vorinostat concentrations were >200 µm in the plasma compartment of treated animals but were almost 100-fold lower in brain tissue. Apolipoprotein B metabolism and the expression of key components of lipid homeostasis in primary hepatocytes from null (Npc1-/-) and missense (Npc1nmf164 ) mutant mice were altered by vorinostat treatment, consistent with a response by these cells independent of the status of the Npc1 locus. These results suggest that HDAC inhibitors have utility to treat visceral NP-C disease. However, it is clear that improved blood-brain barrier penetration will be required to alleviate the neurological symptoms of human NP-C disease.


Asunto(s)
Inhibidores de Histona Desacetilasas/uso terapéutico , Ácidos Hidroxámicos/uso terapéutico , Hígado/efectos de los fármacos , Hígado/fisiopatología , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Enfermedad de Niemann-Pick Tipo C/genética , Proteínas/genética , Animales , Apolipoproteínas B/metabolismo , Células Cultivadas , Colesterol/genética , Colesterol/metabolismo , Modelos Animales de Enfermedad , Inhibidores de Histona Desacetilasas/farmacocinética , Homeostasis/efectos de los fármacos , Humanos , Ácidos Hidroxámicos/farmacocinética , Péptidos y Proteínas de Señalización Intracelular , Hígado/metabolismo , Hígado/patología , Ratones , Ratones Endogámicos C57BL , Mutación Missense , Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C/patología , Enfermedad de Niemann-Pick Tipo C/fisiopatología , Proteínas/metabolismo , Transcriptoma/efectos de los fármacos , Vorinostat
6.
FASEB J ; 29(11): 4682-94, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26220175

RESUMEN

A key component of eukaryotic lipid homeostasis is the esterification of sterols with fatty acids by sterol O-acyltransferases (SOATs). The esterification reactions are allosterically activated by their sterol substrates, the majority of which accumulate at the plasma membrane. We demonstrate that in yeast, sterol transport from the plasma membrane to the site of esterification is associated with the physical interaction of the major SOAT, acyl-coenzyme A:cholesterol acyltransferase (ACAT)-related enzyme (Are)2p, with 2 plasma membrane ATP-binding cassette (ABC) transporters: Aus1p and Pdr11p. Are2p, Aus1p, and Pdr11p, unlike the minor acyltransferase, Are1p, colocalize to sterol and sphingolipid-enriched, detergent-resistant microdomains (DRMs). Deletion of either ABC transporter results in Are2p relocalization to detergent-soluble membrane domains and a significant decrease (53-36%) in esterification of exogenous sterol. Similarly, in murine tissues, the SOAT1/Acat1 enzyme and activity localize to DRMs. This subcellular localization is diminished upon deletion of murine ABC transporters, such as Abcg1, which itself is DRM associated. We propose that the close proximity of sterol esterification and transport proteins to each other combined with their residence in lipid-enriched membrane microdomains facilitates rapid, high-capacity sterol transport and esterification, obviating any requirement for soluble intermediary proteins.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Microdominios de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Esterol O-Aciltransferasa/metabolismo , Esteroles/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1 , Transportadoras de Casetes de Unión a ATP/genética , Animales , Esterificación/fisiología , Lipoproteínas/genética , Lipoproteínas/metabolismo , Microdominios de Membrana/genética , Ratones , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Esterol O-Aciltransferasa/genética
7.
J Biol Chem ; 289(7): 4417-31, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24273168

RESUMEN

The toxic subcellular accumulation of lipids predisposes several human metabolic syndromes, including obesity, type 2 diabetes, and some forms of neurodegeneration. To identify pathways that prevent lipid-induced cell death, we performed a genome-wide fatty acid sensitivity screen in Saccharomyces cerevisiae. We identified 167 yeast mutants as sensitive to 0.5 mm palmitoleate, 45% of which define pathways that were conserved in humans. 63 lesions also impacted the status of the lipid droplet; however, this was not correlated to the degree of fatty acid sensitivity. The most liposensitive yeast strain arose due to deletion of the "ARE2 required for viability" (ARV1) gene, encoding an evolutionarily conserved, potential lipid transporter that localizes to the endoplasmic reticulum membrane. Down-regulation of mammalian ARV1 in MIN6 pancreatic ß-cells or HEK293 cells resulted in decreased neutral lipid synthesis, increased fatty acid sensitivity, and lipoapoptosis. Conversely, elevated expression of human ARV1 in HEK293 cells or mouse liver significantly increased triglyceride mass and lipid droplet number. The ARV1-induced hepatic triglyceride accumulation was accompanied by up-regulation of DGAT1, a triglyceride synthesis gene, and the fatty acid transporter, CD36. Furthermore, ARV1 was identified as a transcriptional of the protein peroxisome proliferator-activated receptor α (PPARα), a key regulator of lipid homeostasis whose transcriptional targets include DGAT1 and CD36. These results implicate ARV1 as a protective factor in lipotoxic diseases due to modulation of fatty acid metabolism. In conclusion, a lipotoxicity-based genetic screen in a model microorganism has identified 75 human genes that may play key roles in neutral lipid metabolism and disease.


Asunto(s)
Proteínas Portadoras/metabolismo , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos/fisiología , Hígado/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Triglicéridos/metabolismo , Animales , Apoptosis/fisiología , Antígenos CD36/genética , Antígenos CD36/metabolismo , Proteínas Portadoras/genética , Línea Celular Tumoral , Diacilglicerol O-Acetiltransferasa/genética , Diacilglicerol O-Acetiltransferasa/metabolismo , Ácidos Grasos/genética , Estudio de Asociación del Genoma Completo , Células HEK293 , Humanos , Hígado/citología , Proteínas de la Membrana/genética , Ratones , PPAR alfa/genética , PPAR alfa/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Triglicéridos/genética
8.
Nat Chem Biol ; 9(9): 565-72, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23831759

RESUMEN

ATP-binding cassette (ABC) transporters are a ubiquitous class of integral membrane proteins of immense clinical interest because of their strong association with human disease and pharmacology. To improve our understanding of these proteins, we used membrane yeast two-hybrid technology to map the protein interactome of all of the nonmitochondrial ABC transporters in the model organism Saccharomyces cerevisiae and combined this data with previously reported yeast ABC transporter interactions in the BioGRID database to generate a comprehensive, integrated 'interactome'. We show that ABC transporters physically associate with proteins involved in an unexpectedly diverse range of functions. We specifically examine the importance of the physical interactions of ABC transporters in both the regulation of one another and in the modulation of proteins involved in zinc homeostasis. The interaction network presented here will be a powerful resource for increasing our fundamental understanding of the cellular role and regulation of ABC transporters.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Mapeo de Interacción de Proteínas , Saccharomyces cerevisiae/metabolismo , Unión Proteica , Saccharomyces cerevisiae/química , Técnicas del Sistema de Dos Híbridos
9.
Annu Rev Nutr ; 33: 413-51, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23701589

RESUMEN

The esterification of amphiphilic alcohols with fatty acids is a ubiquitous strategy implemented by eukaryotes and some prokaryotes to conserve energy and membrane progenitors and simultaneously detoxify fatty acids and other lipids. This key reaction is performed by at least four evolutionarily unrelated multigene families. The synthesis of this "neutral lipid" leads to the formation of a lipid droplet, which despite the clear selective advantage it confers is also a harbinger of cellular and organismal malaise. Neutral lipid deposition as a cytoplasmic lipid droplet may be thermodynamically favored but nevertheless is elaborately regulated. Optimal utilization of these resources by lipolysis is similarly multigenic in determination and regulation. We present here a perspective on these processes that originates from studies in model organisms, and we include our thoughts on interventions that target reductions in neutral lipids as therapeutics for human diseases such as obesity and diabetes.


Asunto(s)
Evolución Biológica , Grasas de la Dieta/metabolismo , Metabolismo de los Lípidos , Animales , Ésteres del Colesterol/metabolismo , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa/efectos adversos , Esterificación , Homeostasis , Humanos , Obesidad/etiología , Obesidad/metabolismo , Triglicéridos/metabolismo
10.
EMBO J ; 31(21): 4106-23, 2012 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-22892566

RESUMEN

Alzheimer disease (AD) is associated with aberrant processing of the amyloid precursor protein (APP) by γ-secretase, via an unknown mechanism. We recently showed that presenilin-1 and -2, the catalytic components of γ-secretase, and γ-secretase activity itself, are highly enriched in a subcompartment of the endoplasmic reticulum (ER) that is physically and biochemically connected to mitochondria, called mitochondria-associated ER membranes (MAMs). We now show that MAM function and ER-mitochondrial communication-as measured by cholesteryl ester and phospholipid synthesis, respectively-are increased significantly in presenilin-mutant cells and in fibroblasts from patients with both the familial and sporadic forms of AD. We also show that MAM is an intracellular detergent-resistant lipid raft (LR)-like domain, consistent with the known presence of presenilins and γ-secretase activity in rafts. These findings may help explain not only the aberrant APP processing but also a number of other biochemical features of AD, including altered lipid metabolism and calcium homeostasis. We propose that upregulated MAM function at the ER-mitochondrial interface, and increased cross-talk between these two organelles, may play a hitherto unrecognized role in the pathogenesis of AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Embrión de Mamíferos/patología , Fibroblastos/patología , Microdominios de Membrana/patología , Mitocondrias/patología , Membranas Mitocondriales/patología , Presenilina-1/fisiología , Presenilina-2/fisiología , Enfermedad de Alzheimer/metabolismo , Animales , Western Blotting , Células Cultivadas , Embrión de Mamíferos/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Fibroblastos/metabolismo , Humanos , Microdominios de Membrana/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Presenilina-1/antagonistas & inhibidores , Presenilina-2/antagonistas & inhibidores , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Fracciones Subcelulares
11.
J Lipid Res ; 53(9): 1800-10, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22701043

RESUMEN

In animal cells, the primary repositories of esterified fatty acids and alcohols (neutral lipids) are lipid droplets that form on the lumenal and/or cytoplasmic side of the endoplasmic reticulum (ER) membrane. A monolayer of amphipathic lipids, intermeshed with key proteins, serves to solubilize neutral lipids as they are synthesized and desorbed. In specialized cells, mobilization of the lipid cargo for delivery to other tissues occurs by secretion of lipoproteins into the plasma compartment. Serum lipoprotein assembly requires an obligate structural protein anchor (apolipoprotein B) and a dedicated chaperone, microsomal triglyceride transfer protein. By contrast, lipid droplets that form on the cytoplasmic face of the ER lack an obligate protein scaffold or any required chaperone/lipid transfer protein. Mobilization of neutral lipids from the cytosol requires regulated hydrolysis followed by transfer of the products to different organelles or export from cells. Several proteins play a key role in controlling droplet number, stability, and catabolism; however, it is our premise that their formation initiates spontaneously, solely as a consequence of neutral lipid synthesis. This default pathway directs droplets into the cytoplasm where they accumulate in many lipid disorders.


Asunto(s)
Retículo Endoplásmico/metabolismo , Metabolismo de los Lípidos , Animales , Humanos , Membranas Intracelulares/metabolismo , Lipoproteínas/metabolismo , Proteoma/metabolismo
12.
J Biol Chem ; 286(33): 29074-29085, 2011 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-21708942

RESUMEN

The PAH1-encoded phosphatidate (PA) phosphatase in Saccharomyces cerevisiae is a pivotal enzyme that produces diacylglycerol for the synthesis of triacylglycerol (TAG) and simultaneously controls the level of PA used for phospholipid synthesis. Quantitative lipid analysis showed that the pah1Δ mutation caused a reduction in TAG mass and an elevation in the mass of phospholipids and free fatty acids, changes that were more pronounced in the stationary phase. The levels of unsaturated fatty acids in the pah1Δ mutant were unaltered, although the ratio of palmitoleic acid to oleic acid was increased with a similar change in the fatty acid composition of phospholipids. The pah1Δ mutant exhibited classic hallmarks of apoptosis in stationary phase and a marked reduction in the quantity of cytoplasmic lipid droplets. Cells lacking PA phosphatase were sensitive to exogenous fatty acids in the order of toxicity palmitoleic acid > oleic acid > palmitic acid. In contrast, the growth of wild type cells was not inhibited by fatty acid supplementation. In addition, wild type cells supplemented with palmitoleic acid exhibited an induction in PA phosphatase activity and an increase in TAG synthesis. Deletion of the DGK1-encoded diacylglycerol kinase, which counteracts PA phosphatase in controlling PA content, suppressed the defect in lipid droplet formation in the pah1Δ mutant. However, the sensitivity of the pah1Δ mutant to palmitoleic acid was not rescued by the dgk1Δ mutation. Overall, these findings indicate a key role of PA phosphatase in TAG synthesis for protection against fatty acid-induced toxicity.


Asunto(s)
Ácidos Grasos/metabolismo , Fosfatidato Fosfatasa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Triglicéridos/biosíntesis , Apoptosis/fisiología , Mutación , Fosfatidato Fosfatasa/genética , Proteínas de Saccharomyces cerevisiae/genética , Triglicéridos/genética
13.
J Biol Chem ; 286(27): 23842-51, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21489983

RESUMEN

Niemann-Pick type C (NP-C) disease is a fatal lysosomal lipid storage disorder for which no effective therapy exists. A genome-wide, conditional synthetic lethality screen was performed using the yeast model of NP-C disease during anaerobiosis, an auxotrophic condition that requires yeast to utilize exogenous sterol. We identified 12 pathways and 13 genes as modifiers of the absence of the yeast NPC1 ortholog (NCR1) and quantified the impact of loss of these genes on sterol metabolism in ncr1Δ strains grown under viable aerobic conditions. Deletion of components of the yeast NuA4 histone acetyltransferase complex in ncr1Δ strains conferred anaerobic inviability and accumulation of multiple sterol intermediates. Thus, we hypothesize an imbalance in histone acetylation in human NP-C disease. Accordingly, we show that the majority of the 11 histone deacetylase (HDAC) genes are transcriptionally up-regulated in three genetically distinct fibroblast lines derived from patients with NP-C disease. A clinically approved HDAC inhibitor (suberoylanilide hydroxamic acid) reverses the dysregulation of the majority of the HDAC genes. Consequently, three key cellular diagnostic criteria of NP-C disease are dramatically ameliorated as follows: lysosomal accumulation of both cholesterol and sphingolipids and defective esterification of LDL-derived cholesterol. These data suggest HDAC inhibition as a candidate therapy for NP-C disease. We conclude that pathways that exacerbate lethality in a model organism can be reversed in human cells as a novel therapeutic strategy. This "exacerbate-reverse" approach can potentially be utilized in any model organism for any disease.


Asunto(s)
Colesterol/metabolismo , Lisosomas/metabolismo , Enfermedad de Niemann-Pick Tipo C/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Esfingolípidos/metabolismo , Anaerobiosis/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Transporte Biológico/genética , Línea Celular , Colesterol/genética , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Ácidos Hidroxámicos/farmacología , Lisosomas/genética , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Enfermedad de Niemann-Pick Tipo C/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Esfingolípidos/genética
14.
J Biol Chem ; 286(14): 11951-9, 2011 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-21266578

RESUMEN

The ARV1-encoded protein mediates sterol transport from the endoplasmic reticulum (ER) to the plasma membrane. Yeast ARV1 mutants accumulate multiple lipids in the ER and are sensitive to pharmacological modulators of both sterol and sphingolipid metabolism. Using fluorescent and electron microscopy, we demonstrate sterol accumulation, subcellular membrane expansion, elevated lipid droplet formation, and vacuolar fragmentation in ARV1 mutants. Motif-based regression analysis of ARV1 deletion transcription profiles indicates activation of Hac1p, an integral component of the unfolded protein response (UPR). Accordingly, we show constitutive splicing of HAC1 transcripts, induction of a UPR reporter, and elevated expression of UPR targets in ARV1 mutants. IRE1, encoding the unfolded protein sensor in the ER lumen, exhibits a lethal genetic interaction with ARV1, indicating a viability requirement for the UPR in cells lacking ARV1. Surprisingly, ARV1 mutants expressing a variant of Ire1p defective in sensing unfolded proteins are viable. Moreover, these strains also exhibit constitutive HAC1 splicing that interacts with DTT-mediated perturbation of protein folding. These data suggest that a component of UPR induction in arv1Δ strains is distinct from protein misfolding. Decreased ARV1 expression in murine macrophages also results in UPR induction, particularly up-regulation of activating transcription factor-4, CHOP (C/EBP homologous protein), and apoptosis. Cholesterol loading or inhibition of cholesterol esterification further elevated CHOP expression in ARV1 knockdown cells. Thus, loss or down-regulation of ARV1 disturbs membrane and lipid homeostasis, resulting in a disruption of ER integrity, one consequence of which is induction of the UPR.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Respuesta de Proteína Desplegada/genética , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Animales , Apoptosis , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Northern Blotting , Células Cultivadas , Colesterol/metabolismo , Biología Computacional , Retículo Endoplásmico/metabolismo , Femenino , Immunoblotting , Macrófagos/citología , Macrófagos/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones , Microscopía Electrónica de Transmisión , Análisis de Secuencia por Matrices de Oligonucleótidos , Pliegue de Proteína , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
15.
J Biol Chem ; 285(44): 33632-41, 2010 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-20663892

RESUMEN

Endoplasmic reticulum (ER) membrane cholesterol is maintained at an optimal concentration of ∼5 mol % by the net impact of sterol synthesis, modification, and export. Arv1p was first identified in the yeast Saccharomyces cerevisiae as a key component of this homeostasis due to its probable role in intracellular sterol transport. Mammalian ARV1, which can fully complement the yeast lesion, encodes a ubiquitously expressed, resident ER protein. Repeated dosing of specific antisense oligonucleotides to ARV1 produced a marked reduction of ARV1 transcripts in liver, adipose, and to a lesser extent, intestine. This resulted in marked hypercholesterolemia, elevated serum bile acids, and activation of the hepatic farnesoid X receptor (FXR) regulatory pathway. Knockdown of ARV1 in murine liver and HepG2 cells was associated with accumulation of cholesterol in the ER at the expense of the plasma membrane and suppression of sterol regulatory element-binding proteins and their targets. These studies indicate a critical role of mammalian Arv1p in sterol movement from the ER and in the ensuing regulation of hepatic cholesterol and bile acid metabolism.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Proteínas Portadoras/metabolismo , Colesterol/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Humanos , Mucosa Intestinal/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Saccharomyces cerevisiae/metabolismo
16.
Prog Lipid Res ; 49(4): 353-65, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20362613

RESUMEN

One manner in which eukaryotic cells respond to their environments is by optimizing the composition and proportions of sterols and sphingolipids in membranes. The physical association of the planar ring of sterols with the acyl chains of phospholipids, particularly sphingolipids, produces membrane micro-heterogeneity that is exploited to coordinate several crucial pathways. We hypothesize that these lipid molecules play an integrated role in human disease; when one of the partners is mis-regulated, pathology frequently ensues. Sterols and sphingolipid levels are not coordinated by the action of a single master regulator, however the cross-talk between their metabolic pathways is considerable. We describe our perspectives on the key components of synthesis, catabolism and transport of these lipid partners with an emphasis on evolutionarily conserved reactions that produce disease states when defective.


Asunto(s)
Metabolismo de los Lípidos , Redes y Vías Metabólicas/fisiología , Esfingolípidos/metabolismo , Esteroles/metabolismo , Enfermedad de Alzheimer/fisiopatología , Animales , Aterosclerosis/fisiopatología , Ácidos y Sales Biliares/metabolismo , Transporte Biológico , Hongos/metabolismo , Humanos , Enfermedad de Huntington/fisiopatología , Enfermedades por Almacenamiento Lisosomal/fisiopatología , Receptores de Esteroides/metabolismo
17.
Clin Lipidol ; 5(3): 387-395, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21394236

RESUMEN

The isolation of the causative genes for Niemann-Pick type C disease, a panethnic lysosomal lipid storage disorder, has provided models of how sterols and other lipids such as glycosphingolipids traverse the membranes of eukaryotic cells. Unfortunately, these molecular advances have yet to reciprocate with a cure for this devastating neurodegenerative disorder where neuronal replenishment will most likely yield the greatest benefit. In the meantime, stabilizing treatment strategies based on the removal of presumably toxic metabolites are in place. For example, the small molecule inhibition of glucosylceramide synthase by miglustat limits ganglioside accumulation and is now the only approved treatment of Niemann-Pick type C. In addition, 2-hydroxypropyl-B-cyclodextrin, a lipid chelator, relieves the lysosomal to endoplasmic reticulum blockage and markedly increases the life expectancy of the murine model. Ultimately, these strategies, targeting the primary biochemical lesion in these cells, and others will likely be combined to provide a synergistic cocktail approach to treating this disease.

18.
J Biol Chem ; 284(45): 30994-1005, 2009 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-19690167

RESUMEN

Deletion of the acyltransferases responsible for triglyceride and steryl ester synthesis in Saccharomyces cerevisiae serves as a genetic model of diseases where lipid overload is a component. The yeast mutants lack detectable neutral lipids and cytoplasmic lipid droplets and are strikingly sensitive to unsaturated fatty acids. Expression of human diacylglycerol acyltransferase 2 in the yeast mutants was sufficient to reverse these phenotypes. Similar to mammalian cells, fatty acid-mediated death in yeast is apoptotic and presaged by transcriptional induction of stress-response pathways, elevated oxidative stress, and activation of the unfolded protein response. To identify pathways that protect cells from lipid excess, we performed genetic interaction and transcriptional profiling screens with the yeast acyltransferase mutants. We thus identified diacylglycerol kinase-mediated phosphatidic acid biosynthesis and production of phosphatidylcholine via methylation of phosphatidylethanolamine as modifiers of lipotoxicity. Accordingly, the combined ablation of phospholipid and triglyceride biosynthesis increased sensitivity to saturated fatty acids. Similarly, normal sphingolipid biosynthesis and vesicular transport were required for optimal growth upon denudation of triglyceride biosynthesis and also mediated resistance to exogenous fatty acids. In metazoans, many of these processes are implicated in insulin secretion thus linking lipotoxicity with early aspects of pancreatic beta-cell dysfunction, diabetes, and the metabolic syndrome.


Asunto(s)
Diacilglicerol O-Acetiltransferasa/deficiencia , Ácidos Grasos/toxicidad , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Esteroles/metabolismo , Muerte Celular/efectos de los fármacos , Diacilglicerol O-Acetiltransferasa/genética , Diacilglicerol O-Acetiltransferasa/metabolismo , Ácidos Grasos/metabolismo , Regulación Fúngica de la Expresión Génica , Humanos , Viabilidad Microbiana , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
19.
Cell Metab ; 10(1): 3-4, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19583946

RESUMEN

Endocytosed cholesterol must be transferred from the environment (e.g., low-density lipoproteins) via the lysosomal system to the rest of the cell. In Niemann-Pick type C disease, this process fails. In a recent issue of Cell, Kwon et al. (2009) suggest how this transpires mechanistically by crystallizing a domain of a protein defective in this syndrome.


Asunto(s)
Proteínas Portadoras/metabolismo , Colesterol/metabolismo , Glicoproteínas de Membrana/metabolismo , Transporte Biológico , Proteínas Portadoras/química , Humanos , Péptidos y Proteínas de Señalización Intracelular , Glicoproteínas de Membrana/química , Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C/metabolismo , Unión Proteica , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...