Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Waste Manag ; 60: 765-774, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27810122

RESUMEN

Rare earth elements are key raw materials in high-technology industries. Mining activities and manufacturing processes of such industries have caused considerable environmental impacts, such as soil erosion, vegetation destruction, and various forms of pollution. Sustaining the long-term supply of rare earth elements is difficult because of the global shortage of rare earth resources. The diminishing supply of rare earth elements has attracted considerable concern because many industrialized countries regarded such elements as important strategic resources for economic growth. This study aims to explore the carbon footprints of yttrium and europium recovery techniques from phosphor. Two extraction recovery methods, namely, acid extraction and solvent extraction, were selected for the analysis and comparison of carbon footprints. The two following functional units were used: (1) the same phosphor amounts for specific Y and Eu recovery concentrations, and (2) the same phosphor amounts for extraction. For acid extraction method, two acidic solutions (H2SO4 and HCl) were used at two different temperatures (60 and 90°C). For solvent extraction method, acid leaching was performed followed by ionic liquid extraction. Carbon footprints from acid and solvent extraction methods were estimated to be 10.1 and 10.6kgCO2eq, respectively. Comparison of the carbon emissions of the two extraction methods shows that the solvent extraction method has significantly higher extraction efficiency, even though acid extraction method has a lower carbon footprint. These results may be used to develop strategies for life cycle management of rare earth resources to realize sustainable usage.


Asunto(s)
Huella de Carbono , Europio/aislamiento & purificación , Reciclaje/métodos , Itrio/aislamiento & purificación , Fraccionamiento Químico/métodos , Solventes/química
2.
ACS Appl Mater Interfaces ; 8(35): 23066-73, 2016 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-27523392

RESUMEN

Metal-free D-π-RS-π-A type sensitizers, consisting of triphenylamine as the electron donor, 2,3-bis(3-(2-ethylhexyl)-5-methylthiophen-2-yl)dithieno[3,2-f:2',3'-h]quinoxaline (DTQT) as the rigidified conjugation spacer (RS), thiophene as the π-spacer, and 2-cyanoacrylic acid as the acceptor/anchor, have broad absorption spectra ranging from 350 to 550 nm and a high molar extinction coefficient up to >46 200 M(-1) cm(-1). Under simulated AM 1.5 G illumination, the dye-sensitized solar cells (DSSCs) fabricated from the dyes exhibited light-to-electricity conversions in the range of 6.78% to 8.27%. The best efficiency is slightly higher than that of N719-based standard DSSC (7.92%). The efficiency can be further boosted to 8.51% by optimizing the concentration of LiI electrolyte.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA