Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 18(4): 3179-87, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26743265

RESUMEN

With a deformed object of a rigid rod inside, the local dislocations may be tracked relatively easily with respect to the internal rigid rod. We apply this concept on protein folding-unfolding to track the internal structural changes of an unfolded protein in solution. Proposed here is a protein internal coordination based on the major axis X of an ellipsoidal protein and the stable intrinsic transition dipole moment µ of the protein during unfolding. In this methodology, small-angle X-ray scattering (SAXS) is used to provide the protein global morphologies in the native and unfolded states. Furthermore, time-resolved fluorescence anisotropy (TRFA) provides the relative orientation between X and µ of Trp59 of the model protein cytochrome c. Hence observed in the protein unfolding with denaturants, acid, urea, or GuHCl, is the elongation of the native protein conformation along a reoriented protein major axis; accompanied are the different extents of relocations of the terminal α helices and loop structures of the protein in the corresponding unfolding.


Asunto(s)
Citocromos c/química , Animales , Caballos , Conformación Proteica , Pliegue de Proteína , Teoría Cuántica , Dispersión del Ángulo Pequeño , Difracción de Rayos X
2.
J Phys Chem B ; 116(34): 10266-74, 2012 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-22853704

RESUMEN

Single-stranded adenine homo-oligonucleotides were investigated in aqueous solution by femtosecond transient absorption spectroscopy in order to study the effect of strand length on the nature and dynamics of excited states formed by UV absorption. Global fitting analysis of bleach recovery signals recorded at a probe wavelength of 250 nm and pH 7 reveals that the same lifetimes of 2.72 and 183 ps reproduce the pronounced biexponential decays observed in all (dA)n oligomers, containing between 2 and 18 residues. Although the lifetimes are invariant, the amplitudes of the short- and long-lived components depend sensitively on the number of residues. For example, the 183 ps component increases with strand length and is greater for DNA vs RNA single strands with the same number of adenines. Inhomogeneous kinetics arising from two classes of adenine bases in each oligomer best explains the observations. A subset of adenine residues produce short-lived excited states upon excitation, while absorption by the remaining adenines yields long-lived excited states that are responsible for the long-lived signal. By assuming that each short-lived excited state in the oligomer makes the same contribution to the transient absorption signal as an excited state of the adenine mononucleotide, the fraction of each type of base in the oligomer can be estimated along with the quantum yield of long-lived excited states. The fraction of oligonucleotides that yield long-lived excited states increases with oligomer length in precisely the same manner as the fraction of bases that are found in base stacks. Corroborating evidence that base stacking leads to distinct decay channels comes from experiments conducted at low pH on (dA)2. Coulombic repulsion between the two protonated bases at pH 2 results in open, unstacked conformations causing the long-lived component seen in (dA)2 at neutral pH to vanish completely. The fast component seen in oligomers with two or more bases is assigned to vibrational cooling following ultrafast internal conversion to the electronic ground state. This monomer-like decay channel is operative for the subset of adenine residues that are either poorly or not at all stacked with neighboring bases. This study shows that static base stacking disorder fully accounts for the length-dependent transient absorption signals. Although absorption likely creates delocalized excitons of unknown spatial extent, the results from this study suggest that long-lived excitations in single-stranded A tracts are already fully localized on no more than two bases no later than 1 ps after UV excitation.


Asunto(s)
Adenina/química , ADN/química , Teoría Cuántica , ARN/química , Concentración de Iones de Hidrógeno
3.
Annu Rev Phys Chem ; 60: 217-39, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19012538

RESUMEN

Ultraviolet light is strongly absorbed by DNA, producing excited electronic states that sometimes initiate damaging photochemical reactions. Fully mapping the reactive and nonreactive decay pathways available to excited electronic states in DNA is a decades-old quest. Progress toward this goal has accelerated rapidly in recent years, in large measure because of ultrafast laser experiments. Here we review recent discoveries and controversies concerning the nature and dynamics of excited states in DNA model systems in solution. Nonradiative decay by single, solvated nucleotides occurs primarily on the subpicosecond timescale. Surprisingly, excess electronic energy relaxes one or two orders of magnitude more slowly in DNA oligo- and polynucleotides. Highly efficient nonradiative decay pathways guarantee that most excited states do not lead to deleterious reactions but instead relax back to the electronic ground state. Understanding how the spatial organization of the bases controls the relaxation of excess electronic energy in the double helix and in alternative structures is currently one of the most exciting challenges in the field.


Asunto(s)
ADN/química , Conformación de Ácido Nucleico , Procesos Fotoquímicos , Pirimidinas/química , Factores de Tiempo , Vibración
4.
Proc Natl Acad Sci U S A ; 105(30): 10285-90, 2008 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-18647840

RESUMEN

Excited electronic states created by UV excitation of the diribonucleoside monophosphates ApA, ApG, ApC, ApU, and CpG were studied by the femtosecond transient-absorption technique. Bleach recovery signals recorded at 252 nm show that long-lived excited states are formed in all five dinucleosides. The lifetimes of these states exceed those measured in equimolar mixtures of the constituent mononucleotides by one to two orders of magnitude, indicating that electronic coupling between proximal nucleobases dramatically slows the relaxation of excess electronic energy. The decay rates of the long-lived states decrease with increasing energy of the charge-transfer state produced by transferring an electron from one base to another. The charge-transfer character of the long-lived states revealed by this analysis supports their assignment to excimer or exciplex states. Identical bleach recovery signals were seen for ApA, (A)(4), and poly(A) at delay times >10 ps after photoexcitation. This indicates that excited states localized on a stack of just two bases are the common trap states independent of the number of stacked nucleotides. The fraction of initial excitations that decay to long-lived exciplex states is approximately equal to the fraction of stacked bases determined by NMR measurements. This supports a model in which excitations associated with two stacked bases decay to exciplex states, whereas excitations in unstacked bases decay via ultrafast internal conversion. These results establish the importance of charge transfer-quenching pathways for UV-irradiated RNA and DNA in room-temperature solution.


Asunto(s)
ADN/química , ARN/química , Rayos Ultravioleta , Emparejamiento Base , Daño del ADN , Técnicas Genéticas , Concentración de Iones de Hidrógeno , Cinética , Biología Molecular/métodos , Conformación de Ácido Nucleico , Oligonucleótidos/química
5.
Biophys J ; 94(12): 4828-36, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18326641

RESUMEN

Equilibrium unfolding behaviors of cytochrome c and lysozyme induced by the presence of urea (0-10 M) as well as changes in temperature (295-363 K) or pH (1.8-7) are examined via small-angle x-ray scattering and spectroscopic techniques, including circular dichroism and optical absorption. Denaturant and temperature effects are incorporated into the free energy expression for a general multigroup unfolding process. Results indicate that there are at least four unfolding groups in the temperature-, urea-, or pH-induced unfolding of cytochrome c: two of these are related to the prosthetic heme group, and the other two correspond, respectively, to the unfolding of alpha-helices and global changes in protein morphology that are largely unaccounted for by the first two groups. In contrast, the unfolding of lysozyme approximately follows a simple one-group process. A modified mean-field Ising model is adopted for a coherent description of the unfolding behaviors observed. Thermodynamic parameters extracted from simple denaturing processes, on the basis of the Ising model, can closely predict unfolding behaviors of the proteins in compounded denaturing environments.


Asunto(s)
Cristalografía/métodos , Citocromos c/química , Citocromos c/ultraestructura , Modelos Químicos , Modelos Moleculares , Muramidasa/química , Muramidasa/ultraestructura , Simulación por Computador , Conformación Proteica , Desnaturalización Proteica , Pliegue de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA