Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39325447

RESUMEN

The integration of high-performance transparent top electrodes with the functional layers of transparent quantum dot light-emitting diodes (T-QLEDs) poses a notable challenge. This study presents a composite transparent top electrode composed of MXene and Ag NWs. The composite electrode demonstrates exceptional transparency (84.6% at 620 nm) and low sheet resistance (16.07 Ω sq-1), rendering it suitable for integration into T-QLEDs. The inclusion of MXene nanosheets in the composite electrode serves a dual role: adjusting the work function to enhance electron injection efficiency and enhancing the interface between Ag NWs and the emissive layer, thereby mitigating the common issue of interfacial resistance in conventional transparent electrodes. This strategic amalgamation results in notable improvements in device performance, yielding a maximum current efficiency of 23.12 cd A-1, an external quantum efficiency of 13.98%, and a brightness of 21,015 cd m-2. These performance metrics surpass those achieved by T-LEDs employing pristine Ag NW electrodes. This study offers valuable insights into T-QLED device advancement and provides a promising approach for transparent electrode fabrication in optoelectronic applications.

2.
J Colloid Interface Sci ; 659: 1042-1051, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38195360

RESUMEN

Monitoring non-contact high-frequency vibrations requires improving the sensitivity and linear response of iontronic pressure sensors (IPSs). In this study, we incorporate composite electrodes comprising silver nanowires (Ag NWs) and MXene into IPSs to enhance electronic conduction and pseudocapacitance. Moreover, we utilize a novel surface-pillar microstructure, along with an internally randomized multi-bubble structure within the dielectric layer, to significantly expand the linear response range of the sensor. The resulting IPS device demonstrates exceptional linear sensitivity, measuring approximately 153.83 kPa-1, across a broad pressure range of up to 260 kPa. Additionally, it exhibits long-term stability, rapid response and recovery characteristics, and remains functional underwater. Notably, these devices exhibit remarkable capabilities in monitoring ultrasonic vibrations and accurately identifying sound wave vibrations. The integration of composite electrodes, microstructure designs, and their compatibility with underwater applications positions these IPSs as highly promising tools for precise measurements and advancements in flexible electronics technology.

3.
ACS Appl Mater Interfaces ; 15(37): 44001-44011, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37671797

RESUMEN

The increased popularity of wearable electronic devices has led to a greater need for advanced sensors. However, fabricating pressure sensors that are flexible, highly sensitive, robust, and compatible with large-scale fabrication technology is challenging. This work investigates a piezoresistive sensor constructed from an MXene/MoS2 hierarchical nanostructure, which is obtained through an easy and inexpensive fabrication process. The sensor exhibits a high sensitivity of 0.42 kPa-1 (0-1.5 kPa), rapid response (∼36 ms), and remarkable mechanical durability (∼10,000 cycles at 13 kPa). The sensor has been demonstrated to be successful in detecting human motion, speech recognition, and physiological signals, particularly in analyzing human pulse. These data can be used to alert and identify irregularities in human health. Additionally, the sensing units are able to construct sensor arrays of various sizes and configurations, enabling pressure distribution imaging in a variety of application scenarios. This research proposes a cost-effective and scalable approach to fabricating piezoresistive sensors and sensor arrays, which can be utilized for monitoring human health and for use in human-machine interfaces.


Asunto(s)
Molibdeno , Nanoestructuras , Humanos , Frecuencia Cardíaca , Movimiento (Física)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA