Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JBMR Plus ; 8(5): ziae031, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38606146

RESUMEN

Nonunion resulting from early bone resorption is common after bone transplantation surgery. In these patients, instability or osteoporosis causes hyperactive catabolism relative to anabolism, leading to graft resorption instead of fusion. Systemic zoledronate administration inhibits osteoclastogenesis and is widely used to prevent osteoporosis; however, evidence on local zoledronate application is controversial due to osteoblast cytotoxicity, uncontrolled dosing regimens, and local release methods. We investigated the effects of zolendronate on osteoclastogenesis and osteogenesis and explored the corresponding signaling pathways. In vitro cytotoxicity and differentiation of MC3T3E1 cells, rat bone marrow stromal cells (BMSCs) and preosteoclasts (RAW264.7 cells) were evaluated with different zolendronate concentrations. In vivo bone regeneration ability was tested by transplanting different concentrations of zolendronate with ß-tricalcium phosphate (TCP) bone substitute into rat femoral critical-sized bone defects. In vitro, zolendronate concentrations below 2.5 × 10-7 M did not compromise viability in the three cell lines and did not promote osteogenic differentiation in MC3T3E1 cells and BMSCs. In RAW264.7 cells, zoledronate inhibited extracellular regulated protein kinases and c-Jun n-terminal kinase signaling, downregulating c-Fos and NFATc1 expression, with reduced expression of fusion-related dendritic cell­specific transmembrane protein and osteoclast-specific Ctsk and tartrate-resistant acid phosphatase (. In vivo, histological staining revealed increased osteoid formation and neovascularization and reduced fibrotic tissue with 500 µM and 2000 µM zolendronate. More osteoclasts were found in the normal saline group after 6 weeks, and sequential osteoclast formation occurred after zoledronate treatment, indicating inhibition of bone resorption during early callus formation without inhibition of late-stage bone remodeling. In vivo, soaking ß-TCP artificial bone with 500 µM or 2000 µM zoledronate is a promising approach for bone regeneration, with potential applications in bone transplantation.

2.
Ann Clin Microbiol Antimicrob ; 22(1): 99, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37946238

RESUMEN

BACKGROUND: Clinically, a large part of inflammatory bowel disease (IBD) patients is complicated by oral lesions. Although previous studies proved oral microbial dysbiosis in IBD patients, the bacterial community in the gastrointestinal (GI) tract of those IBD patients combined with oral ulcers has not been profiled yet. METHODS: In this study, we enrolled four groups of subjects, including healthy controls (CON), oral ulcer patients (OU), and ulcerative colitis patients with (UC_OU) and without (UC) oral ulcers. Bio-samples from three GI niches containing salivary, buccal, and fecal samples, were collected for 16S rRNA V3-V4 region sequencing. Bacterial abundance and related bio-functions were compared, and data showed that the fecal microbiota was more potent than salivary and buccal microbes in shaping the host immune system. ~ 22 UC and 10 UC_OU 5-aminosalicylate (5-ASA) routine treated patients were followed-up for six months; according to their treatment response (a decrease in the endoscopic Mayo score), they were further sub-grouped as responding and non-responding patients. RESULTS: We found those UC patients complicated with oral ulcers presented weaker treatment response, and three oral bacterial genera, i.e., Fusobacterium, Oribacterium, and Campylobacter, might be connected with treatment responding. Additionally, the salivary microbiome could be an indicator of treatment responding in 5-ASA routine treatment rather than buccal or fecal ones. CONCLUSIONS: The fecal microbiota had a strong effect on the host's immune indices, while the oral bacterial microbiota could help stratification for ulcerative colitis patients with oral ulcers. Additionally, the oral microbiota had the potential role in reflecting the treatment response of UC patients. Three oral bacteria genera (Fusobacterium, Oribacterium, and Campylobacter) might be involved in UC patients with oral ulcers lacking treatment responses, and monitoring oral microbiota may be meaningful in assessing the therapeutic response in UC patients.


Asunto(s)
Colitis Ulcerosa , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Microbiota , Úlceras Bucales , Humanos , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/microbiología , Úlceras Bucales/tratamiento farmacológico , ARN Ribosómico 16S/genética , Microbioma Gastrointestinal/genética , Enfermedades Inflamatorias del Intestino/microbiología , Bacterias/genética , Heces/microbiología , Mesalamina
3.
Biology (Basel) ; 9(11)2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33138323

RESUMEN

Large cardiovascular outcome trials have reported favorable effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on heart failure. To study the potential mechanism of the SGLT2 inhibition in heart failure, we used the murine doxorubicin-induced cardiomyopathy model and identified the toll-like receptor 9 (TLR9), NAD-dependent deacetylase sirtuin-3 (SIRT3), and Beclin 1, acting in a complex together in response to empagliflozin treatment. The interactions and implications in mitochondrial function were evaluated with TLR9 deficient, SIRT3 deficient, Beclin 1 haplodeficient, and autophagy reporter mice and confirmed in a patient with SIRT3 point mutation and reduced enzymatic activity. The SGLT2 inhibitor, empagliflozin, protects the heart from doxorubicin cardiomyopathy in mice, by acting through a novel Beclin 1-toll-like receptor (TLR) 9-sirtuin-(SIRT) 3 axis. TLR9 and SIRT3 were both essential for the protective effects of empagliflozin. The dilated cardiomyopathy patient with SIRT3 point mutation and reduced enzymatic activity is associated with reduced TLR9 activation and the absence of mitochondrial responses in the heart after the SGLT2 inhibitor treatment. Our data indicate a dynamic communication between autophagy and Beclin 1-TLR9-SIRT3 complexes in the mitochondria in response to empagliflozin that may serve as a potential treatment strategy for heart failure.

4.
J Vis Exp ; (118)2016 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-28060253

RESUMEN

N6-Methyladenosine (m6A) modifications of RNA are diverse and ubiquitous amongst eukaryotes. They occur in mRNA, rRNA, tRNA, and microRNA. Recent studies have revealed that these reversible RNA modifications affect RNA splicing, translation, degradation, and localization. Multiple physiological processes, like circadian rhythms, stem cell pluripotency, fibrosis, triglyceride metabolism, and obesity are also controlled by m6A modifications. Immunoprecipitation/sequencing, mass spectrometry, and modified northern blotting are some of the methods commonly employed to measure m6A modifications. Herein, we present a northeastern blotting technique for measuring m6A modifications. The current protocol provides good size separation of RNA, better accommodation and standardization for various experimental designs, and clear delineation of m6A modifications in various sources of RNA. While m6A modifications are known to have a crucial impact on human physiology relating to circadian rhythms and obesity, their roles in other (patho)physiological states are unclear. Therefore, investigations on m6A modifications have immense possibility to provide key insights into molecular physiology.


Asunto(s)
Adenosina/análogos & derivados , Northern Blotting/métodos , ARN/química , Adenosina/química , Humanos , Metilación , MicroARNs , ARN Mensajero , ARN Ribosómico , ARN de Transferencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...