Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 30
1.
Article En | MEDLINE | ID: mdl-38653931

PURPOSE: The absence of clinically applicable imaging techniques for continuous monitoring of transplanted cells poses a significant obstacle to the clinical translation of stem cell-based therapies for vascular regeneration. This study aims to optimize a clinically applicable, non-invasive imaging technique to longitudinally monitor vascular endothelial cells (ECs) for vascular regeneration in peripheral artery disease (PAD). METHODS: Human induced pluripotent stem cells (HiPSCs) were employed to generate ECs (HiPSC-ECs). Lentiviral vectors encoding human sodium iodide symporter (hNIS) and enhanced green fluorescent protein (eGFP) genes were introduced to HiPSCs and HiPSC-ECs at varying multiplicities of infection (MOI). Through a combination of fluorescence microscopy and flow cytometry, an optimized transduction technique for introducing hNIS-eGFP into HiPSC-ECs was established. Subsequently, single-photon emission computed tomography (SPECT) was utilized for imaging of the transduced cells in vitro and in vivo after transplantation into the gastrocnemius muscle of nude mice. RESULTS: Lentiviral transduction resulted in sustained co-expression of hNIS and eGFP in HiPSC-ECs when transduced post-endothelial differentiation. An optimal MOI of five yielded over 90% hNIS-eGFP expression efficiency without compromising cell viability. hNIS-eGFP+ HiPSC-ECs exhibited 99mTc uptake and were detectable through SPECT in vitro. Additionally, intramuscular injection of hNIS-eGFP+ HiPSC-ECs with MatrigelTM into the hindlimbs of nude mice enabled real-time SPECT/CT tracking, from which a reduction in signal exceeding 80% was observed within 7 days. CONCLUSIONS: This study establishes an optimized cell modification and imaging protocol for tracking transplanted cells. Future efforts will focus on enhancing cell survival and integration via improved delivery systems, thereby advancing the potential of cell-based therapies for PAD.

2.
Eur Heart J Cardiovasc Imaging ; 25(1): 18-26, 2023 Dec 21.
Article En | MEDLINE | ID: mdl-37708373

AIMS: While transthoracic echocardiography (TTE) assessment of left ventricular end-diastolic pressure (LVEDP) is critically important, the current paradigm is subject to error and indeterminate classification. Recently, peak left atrial strain (LAS) was found to be associated with LVEDP. We aimed to test the hypothesis that integration of the entire LAS time curve into a single parameter could improve the accuracy of peak LAS in the noninvasive assessment of LVEDP with TTE. METHODS AND RESULTS: We retrospectively identified 294 patients who underwent left heart catheterization and TTE within 24 h. LAS curves were trained using machine learning (100 patients) to detect LVEDP ≥ 15 mmHg, yielding the novel parameter LAS index (LASi). The accuracy of LASi was subsequently validated (194 patients), side by side with peak LAS and ASE/EACVI guidelines, against invasive filling pressures. Within the validation cohort, invasive LVEDP was elevated in 116 (59.8%) patients. The overall accuracy of LASi, peak LAS, and American Society of Echocardiography/European Association for Cardiovascular Imaging (ASE/EACVI) algorithm was 79, 75, and 76%, respectively (excluding 37 patients with indeterminate diastolic function by ASE/EACVI guidelines). When the number of LASi indeterminates (defined by near-zero LASi values) was matched to the ASE/EACVI guidelines (n = 37), the accuracy of LASi improved to 87%. Importantly, among the 37 patients with ASE/EACVI-indeterminate diastolic function, LASi had an accuracy of 81%, compared with 76% for peak LAS. CONCLUSION: LASi allows the detection of elevated LVEDP using invasive measurements as a reference, at least as accurately as peak LAS and current diastolic function guideline algorithm, with the advantage of no indeterminate classifications in patients with measurable LAS.


Ventricular Dysfunction, Left , Ventricular Function, Left , Humans , Blood Pressure , Retrospective Studies , Heart Atria/diagnostic imaging , Echocardiography , Diastole , Ventricular Dysfunction, Left/diagnostic imaging , Stroke Volume , Ventricular Pressure
4.
J Am Soc Echocardiogr ; 35(9): 940-946, 2022 09.
Article En | MEDLINE | ID: mdl-35605896

BACKGROUND: Quantification of mitral regurgitation (MR) by echocardiography is integral to assessing lesion severity and entails the integration of multiple Doppler-based parameters. These methods are founded primarily upon the principle of proximal isovelocity surface area (PISA), a two-dimensional (2D) method known to involve several assumptions regarding MR jet characteristics. The authors analyzed the results of a semiautomated method of three-dimensional (3D)-based regurgitant volume (RVol) estimation that accounts for jet behavior throughout the cardiac cycle and compared it with conventional 2D PISA methods for MR quantification. METHODS: A total of 50 patients referred for transesophageal echocardiography for evaluation of primary (n = 25) and secondary (n = 25) MR were included for analysis. Three-dimensional full-volume color data sets were acquired, along with standard 2D methods for PISA calculation. A 3D semiautomated MR flow quantification algorithm was applied offline to calculate 3D RVol, with simultaneous temporal curves generated from the 3D data set. Three-dimensional RVol was compared with 2D RVol. Three-dimensional vena contracta area was also performed in all cases. RESULTS: There was a modest correlation between 2D RVol and 3D RVol (r = 0.60). The semiautomated 3D approach resulted in significantly lower values of RVol compared with 2D PISA. Real-time and dynamic flow curve patterns were used for integral estimates of 3D RVol over the cardiac cycle, with a distinct bimodal pattern in functional MR and a brief and solitary peak in primary MR. CONCLUSIONS: Using a semiautomated 3D software for the quantification of MR allows the simultaneous calculation of 3D RVol with an automated generation of dynamic flow curves characteristic of the underlying MR mechanism. The present flow curve pattern results highlight well-known differences between MR flow dynamics in degenerative MR compared with functional MR.


Echocardiography, Three-Dimensional , Mitral Valve Insufficiency , Echocardiography, Doppler, Color/methods , Echocardiography, Three-Dimensional/methods , Echocardiography, Transesophageal , Humans , Mitral Valve Insufficiency/diagnostic imaging , Reproducibility of Results , Severity of Illness Index
5.
J Am Coll Cardiol ; 79(16): 1549-1561, 2022 04 26.
Article En | MEDLINE | ID: mdl-35450571

BACKGROUND: Limited data exist to characterize novel measures of left atrial (LA) structure and function in older adults without prevalent heart failure (HF). OBJECTIVES: The aim was to assess reference range of LA measures, their associations with N-terminal pro-B-type natriuretic-peptide (NT-proBNP) and the related risk for incident HF or death. METHODS: We analyzed LA structure (LA maximal [LAViMax] and minimal volume indexed by body surface area) and function (LA emptying fraction, LA reservoir, conduit, and contraction strain) in 4,901 participants from the ARIC (Atherosclerosis Risk In Communities) study (mean age 75 ± 5 years, 40% male, and 19% Black) without prevalent HF. We assessed sex-specific 10th and 90th percentile ARIC-based reference limits in 301 participants free of prevalent cardiovascular disease, and related LA measures to NT-proBNP and incident HF or death (median follow-up of 5.5 years) in the whole ARIC cohort. RESULTS: Approximately 20% of the overall population had LA abnormalities according to the ARIC-based reference limit. Each LA measure was associated with NT-proBNP and, except for LAViMax, with incident HF or death after multivariable adjustment (including left ventricular function and NT-proBNP). Results were consistent in participants with normal LAViMax (P for interaction > 0.05). LA measures were prognostic for both incident HF with preserved ejection fraction or death and incident HF with reduced ejection fraction or death. When added to HF risk factors and NT-proBNP (baseline C-statistics = 0.74) all LA measures, except for LAViMax, significantly enhanced the prognostic accuracy. CONCLUSIONS: Novel measures of LA structure and function, but not standard assessment by LAViMax, are associated with increased risk of incident HF or death regardless of measures of left ventricular function and NT-proBNP.


Heart Diseases , Heart Failure , Aged , Aged, 80 and over , Biomarkers , Female , Heart Atria/diagnostic imaging , Heart Failure/diagnosis , Heart Failure/epidemiology , Humans , Male , Natriuretic Peptide, Brain , Peptide Fragments , Stroke Volume , Ventricular Function, Left
6.
Polymers (Basel) ; 13(14)2021 Jul 18.
Article En | MEDLINE | ID: mdl-34301111

Gelatin methacryloyl (GelMA) hydrogel is a photopolymerizable biomaterial widely used for three-dimensional (3D) cell culture due to its high biocompatibility. However, the drawback of GelMA hydrogel is its poor mechanical properties, which may compromise the feasibility of biofabrication techniques. In this study, a cell-laden GelMA composite hydrogel with a combination incorporating silanized hydroxyapatite (Si-HAp) and a simple and harmless visible light crosslinking system for this hydrogel were developed. The incorporation of Si-HAp into the GelMA hydrogel enhanced the mechanical properties of the composite hydrogel. Moreover, the composite hydrogel exhibited low cytotoxicity and promoted the osteogenic gene expression of embedded MG63 cells and Human bone marrow mesenchymal stem cells (hBMSCs). We also established a maskless lithographic method to fabricate a defined 3D structure under visible light by using a digital light processing projector, and the incorporation of Si-HAp increased the resolution of photolithographic hydrogels. The GelMA-Si-HAp composite hydrogel system can serve as an effective biomaterial in bone regeneration.

7.
PLoS One ; 16(3): e0248068, 2021.
Article En | MEDLINE | ID: mdl-33735190

Collagen is an important component in maintaining structural integrity and functionality of tissues and is modulated in various biological processes. Its visualization and possible quantification using histopathological stains can be important for understanding disease progression or therapeutic response. Visualization of collagen fiber with the histological stain picrosirius red (PSR) is enhanced with polarized light and quantitative analysis is possible using circular polarizers. However, linear polarizers are more commonly available and easier to optically align. The objective of the present study is to demonstrate a novel image acquisition technique and analysis method using linearly polarized light. The proposed imaging technique is based on image acquisition at multiple slide rotation angles, which are co-registered to form a composite image used for quantitative analysis by pixel intensity or pixel counting. The technique was demonstrated on multiple human coronary samples with varying histopathologies and developed specifically to analyze cap collagen in atherosclerotic plaque. Pixel counting image analysis was found to be reproducible across serial tissue sections and across different users and sufficiently sensitive to detect differences in cap structural integrity that are likely relevant to prediction of rupture risk. The benefit of slide rotation angle under linear polarization to acquire images represents a feasible and practical implementation for expanding the general utility of PSR for quantitative analysis.


Azo Compounds , Collagen/analysis , Coronary Vessels/pathology , Microscopy, Polarization , Plaque, Atherosclerotic/pathology , Humans , Staining and Labeling
8.
Nano Lett ; 21(3): 1352-1359, 2021 02 10.
Article En | MEDLINE | ID: mdl-33508203

Microbes are critical drivers of all ecosystems and many biogeochemical processes, yet little is known about how the three-dimensional (3D) organization of these dynamic organisms contributes to their overall function. To probe how biofilm structure affects microbial activity, we developed a technique for patterning microbes in 3D geometries using projection stereolithography to bioprint microbes within hydrogel architectures. Bacteria were printed and monitored for biomass accumulation, demonstrating postprint viability of cells using this technique. We verified our ability to integrate biological and geometric complexity by fabricating a printed biofilm with two E. coli strains expressing different fluorescence. Finally, we examined the target application of microbial absorption of metal ions to investigate geometric effects on both the metal sequestration efficiency and the uranium sensing capability of patterned engineered Caulobacter crescentus strains. This work represents the first demonstration of the stereolithographic printing of microbials and presents opportunities for future work of engineered biofilms and other complex 3D structured cultures.


Bioprinting , Biofilms , Ecosystem , Escherichia coli/genetics , Printing, Three-Dimensional
9.
Biomaterials ; 201: 99-112, 2019 05.
Article En | MEDLINE | ID: mdl-30807988

The basement membrane is a specialized extracellular matrix substrate responsible for support and maintenance of epithelial and endothelial structures. Engineered basement membrane-like hydrogel systems have the potential to advance understanding of cell-cell and cell-matrix interactions by allowing precise tuning of the substrate or matrix biochemical and biophysical properties. In this investigation, we developed tunable hydrogel substrates with conjugated bioactive peptides to modulate cell binding and growth factor signaling by endothelial cells. Hydrogels were formed by employing a poly(ethylene glycol) crosslinker to covalently crosslink gelatin polymers and simultaneously conjugate laminin-derived YIGSR peptides or vascular endothelial growth factor (VEGF)-mimetic QK peptides to the gelatin. Rheological characterization revealed rapid formation of hydrogels with similar stiffnesses across tested formulations, and swelling analysis demonstrated dependency on peptide and crosslinker concentrations in hydrogels. Levels of phosphorylated VEGF Receptor 2 in cells cultured on hydrogel substrates revealed that while human umbilical vein endothelial cells (HUVECs) responded to both soluble and conjugated forms of the QK peptide, conditionally-immortalized human glomerular endothelial cells (GEnCs) only responded to the conjugated presentation of the peptide. Furthermore, whereas HUVECs exhibited greatest upregulation in gene expression when cultured on YIGSR- and QK-conjugated hydrogel substrates after 5 days, GEnCs exhibited greatest upregulation when cultured on Matrigel control substrates at the same time point. These results indicate that conjugation of bioactive peptides to these hydrogel substrates significantly influenced endothelial cell behavior in cultures but with differential responses between HUVECs and GEnCs.


Biocompatible Materials/chemistry , Endothelial Cells/drug effects , Gelatin/chemistry , Hydrogels/chemistry , Peptides/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry , Amines/metabolism , Basement Membrane , Human Umbilical Vein Endothelial Cells , Humans , Hydrogen-Ion Concentration , Microscopy, Electron, Scanning , Peptides/pharmacology , Polymers/pharmacology
10.
Acta Biomater ; 85: 84-93, 2019 02.
Article En | MEDLINE | ID: mdl-30590182

Three-dimensional (3D) printing of decellularized extracellular matrix (dECM) hydrogels is a promising technique for regenerative engineering. 3D-printing enables the reproducible and precise patterning of multiple cells and biomaterials in 3D, while dECM has high organ-specific bioactivity. However, dECM hydrogels often display poor printability on their own and necessitate additives or support materials to enable true 3D structures. In this study, we used a sacrificial material, 3D-printed Pluronic F-127, to serve as a platform into which dECM hydrogel can be incorporated to create specifically designed structures made entirely up of dECM. The effects of 3D dECM are studied in the context of engineering the intrahepatic biliary tree, an often-understudied topic in liver tissue engineering. Encapsulating biliary epithelial cells (cholangiocytes) within liver dECM has been shown to lead to the formation of complex biliary trees in vitro. By varying several aspects of the dECM structures' geometry, such as width and angle, we show that we can guide the directional formation of biliary trees. This is confirmed by computational 3D image analysis of duct alignment. This system also enables fabrication of a true multi-layer dECM structure and the formation of 3D biliary trees into which other cell types can be seeded. For example, we show that hepatocyte spheroids can be easily incorporated within this system, and that the seeding sequence influences the resulting structures after seven days in culture. STATEMENT OF SIGNIFICANCE: The field of liver tissue engineering has progressed significantly within the past several years, however engineering the intrahepatic biliary tree has remained a significant challenge. In this study, we utilize the inherent bioactivity of decellularized extracellular matrix (dECM) hydrogels and 3D-printing of a sacrificial biomaterial to create spatially defined, 3D biliary trees. The creation of patterned, 3D dECM hydrogels in the past has only been possible with additives to the gel that may stifle its bioactivity, or with rigid and permanent support structures that may present issues upon implantation. Additionally, the biological effect of 3D spatially patterned liver dECM has not been demonstrated independent of the effects of dECM bioactivity alone. This study demonstrates that sacrificial materials can be used to create pure, multi-layer dECM structures, and that strut width and angle can be changed to influence the formation and alignment of biliary trees encapsulated within. Furthermore, this strategy allows co-culture of other cells such as hepatocytes. We demonstrate that not only does this system show promise for tissue engineering the intrahepatic biliary tree, but it also aids in the study of duct formation and cell-cell interactions.


Biliary Tract/growth & development , Epithelium/growth & development , Extracellular Matrix/metabolism , Hydrogels/pharmacology , Animals , Bile Ducts/drug effects , Biliary Tract/drug effects , Coculture Techniques , Epithelium/drug effects , Extracellular Matrix/drug effects , Female , Hepatocytes/cytology , Humans , Mice , Printing, Three-Dimensional , Swine , Tissue Scaffolds/chemistry
11.
Sci Rep ; 8(1): 12220, 2018 08 15.
Article En | MEDLINE | ID: mdl-30111800

The biliary tree is an essential component of transplantable human liver tissue. Despite recent advances in liver tissue engineering, attempts at re-creating the intrahepatic biliary tree have not progressed significantly. The finer branches of the biliary tree are structurally and functionally complex and heterogeneous and require harnessing innate developmental processes for their regrowth. Here we demonstrate the ability of decellularized liver extracellular matrix (dECM) hydrogels to induce the in vitro formation of complex biliary networks using encapsulated immortalized mouse small biliary epithelial cells (cholangiocytes). This phenomenon is not observed using immortalized mouse large cholangiocytes, or with purified collagen 1 gels or Matrigel. We also show phenotypic stability via immunostaining for specific cholangiocyte markers. Moreover, tight junction formation and maturation was observed to occur between cholangiocytes, exhibiting polarization and transporter activity. To better define the mechanism of duct formation, we utilized three fluorescently labeled, but otherwise identical populations of cholangiocytes. The cells, in a proximity dependent manner, either branch out clonally, radiating from a single nucleation point, or assemble into multi-colored structures arising from separate populations. These findings present liver dECM as a promising biomaterial for intrahepatic bile duct tissue engineering and as a tool to study duct remodeling in vitro.


Biliary Tract/metabolism , Extracellular Matrix/metabolism , Liver/metabolism , Animals , Bile Ducts/cytology , Bile Ducts/metabolism , Bile Ducts, Intrahepatic/cytology , Biliary Tract/cytology , Cell Line , Epithelial Cells/cytology , Female , Hydrogels/pharmacology , Liver/cytology , Mice , Swine
12.
J Tissue Eng Regen Med ; 12(10): 2099-2111, 2018 10.
Article En | MEDLINE | ID: mdl-30058281

For stem cell differentiation, the microenvironment can play an important role, and hydrogels can provide a three-dimensional microenvironment to allow native cell growth in vitro. A challenge is that the stem cell's differentiation can be influenced by the matrix stiffness. We demonstrate a low-toxicity method to create different stiffness matrices, by using a photopolymerizable gelatin methacrylate (GelMA) hydrogel cross-linked by blue light (440 nm). The stiffness and porosity of GelMA hydrogel is easily modified by altering its concentration. We used human bone marrow mesenchymal stem cells (MSCs) as a cell source and cultured the GelMA-encapsulated cells with EGM-2 medium to induce endothelial differentiation. In our GelMA blue light hydrogel system, we found that MSCs can be differentiated into both endothelial-like and osteogenic-like cells. The mRNA expressions of endothelial cell markers CD31, von Willebrand factor, vascular endothelial growth factor receptor-2, and CD34 were significantly increased in softer GelMA hydrogels (7.5% and 10%) compared with stiffer matrices (15% GelMA). On the other hand, the enhancements of osteogenic markers mRNA expressions (Alkaline phosphatase (ALP), Runx2, osteocalcin, and osteopontin) were highest in 10% GelMA. We also found that 10% GelMA hydrogel offered optimal conditions for MSCs to form capillary-like structures. These results suggest that the mechanical properties of the GelMA hydrogel can influence both endothelial and osteogenic differentiation of MSCs and sequent capillary-like formation.


Cell Differentiation/drug effects , Gelatin/pharmacology , Hydrogels/pharmacology , Light , Mesenchymal Stem Cells/cytology , Methacrylates/pharmacology , Polymerization , Biomarkers/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Culture Media , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Osteogenesis/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism
13.
J Biomed Mater Res A ; 106(9): 2448-2462, 2018 09.
Article En | MEDLINE | ID: mdl-29664217

Hydrogels, highly-hydrated crosslinked polymer networks, closely mimic the microenvironment of native extracellular matrix (ECM) and thus present as ideal platforms for three-dimensional cell culture. Hydrogels derived from tissue- and organ-specific decellularized ECM (dECM) may retain bioactive signaling cues from the native tissue or organ that could in turn modulate cell-material interactions and response. In this study, we demonstrate that porcine kidney dECM can be processed to form hydrogels suitable for cell culture and encapsulation studies. Scanning electron micrographs of hydrogels demonstrated a fibrous ultrastructure with interconnected pores, and rheological analysis revealed rapid gelation times with shear moduli dependent upon the protein concentration of the hydrogels. Conditionally-immortalized human glomerular endothelial cells (GEnCs) cultured on top of or encapsulated within hydrogels exhibited high cell viability and proliferation over a one-week culture period. However, gene expression analysis of GEnCs encapsulated within kidney dECM hydrogels revealed significantly lower expression of several relevant genes of interest compared to those encapsulated within hydrogels composed of only purified collagen I. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A:2448-2462, 2018.


Cells, Immobilized/cytology , Endothelial Cells/cytology , Extracellular Matrix/chemistry , Hydrogels/pharmacology , Kidney Glomerulus/cytology , Rheology , Animals , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Immobilized/drug effects , Cells, Immobilized/metabolism , Collagen Type I/pharmacology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Extracellular Matrix/ultrastructure , Female , Humans , Hydrogels/chemistry , Swine
14.
Exp Hematol Oncol ; 6: 22, 2017.
Article En | MEDLINE | ID: mdl-28794917

BACKGROUND: Traditional two-dimensional (2-D) monolayer cell culture is vastly different from in vivo physiological conditions, which can lead to inaccurate or insufficient data in areas where response and efficacy within humans are being investigated, such as drug discovery, pathology studies, etc. Misleading results arise from two main disadvantages of monolayer cell culture. First, after several passages, cell lines lose many features from their original in vivo state. Second, the morphology of cells cultured in a monolayer is much different from the cell morphology in three-dimensional (3-D) in vivo conditions, thus resulting in altered cellular function. Three-dimensional multi-cellular spheroids, on the other hand, are a better representation of in vivo physiological conditions while still retaining many of the in vitro cell culture advantages. Primary spheroids freshly isolated from tissue samples are especially ideal for cell-based assays by avoiding the two problems of 2-D monolayer cell culture. METHODS: In this paper, we report a microfluidic device for primary tumor spheroid isolation. Pancreatic tumor samples from mice were used in the experiments. RESULTS: We successfully isolated primary tumor spheroids from the pancreatic tumor samples and were able to maintain the spheroids in culture for up to two weeks. CONCLUSIONS: This novel microfluidic device may promote and advance the isolation of primary tumor spheroids for future drug testing and interrogation of tumor characteristics.

15.
Sci Rep ; 5: 14096, 2015 Sep 14.
Article En | MEDLINE | ID: mdl-26365165

The transition zone (TZ) of primary cilia serves as a diffusion barrier to regulate ciliogenesis and receptor localization for key signaling events such as sonic hedgehog signaling. Its gating mechanism is poorly understood due to the tiny volume accommodating a large number of ciliopathy-associated molecules. Here we performed stimulated emission depletion (STED) imaging of collective samples and recreated superresolved relative localizations of eight representative species of ciliary proteins using position averages and overlapped with representative electron microscopy (EM) images, defining an architectural foundation at the ciliary base. Upon this framework, transmembrane proteins TMEM67 and TCTN2 were accumulated at the same axial level as MKS1 and RPGRIP1L, suggesting that their regulation roles for tissue-specific ciliogenesis occur at a specific level of the TZ. CEP290 is surprisingly localized at a different axial level bridging the basal body (BB) and other TZ proteins. Upon this molecular architecture, two reservoirs of intraflagellar transport (IFT) particles, correlating with phases of ciliary growth, are present: one colocalized with the transition fibers (TFs) while the other situated beyond the distal edge of the TZ. Together, our results reveal an unprecedented structural framework of the TZ, facilitating our understanding in molecular screening and assembly at the ciliary base.


Cilia/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Antigens, Neoplasm/metabolism , Cell Cycle Proteins , Cell Line , Cilia/chemistry , Cilia/ultrastructure , Cytoskeletal Proteins , Genes, Reporter , Humans , Membrane Proteins/metabolism , Microscopy, Confocal , Microscopy, Electron , Neoplasm Proteins/metabolism , Proteins/metabolism
16.
J Vis Exp ; (102): e53271, 2015 Aug 10.
Article En | MEDLINE | ID: mdl-26327609

This protocol details the generation of acellular, yet biofunctional, renal extracellular matrix (ECM) scaffolds that are useful as small-scale model substrates for organ-scale tissue development. Sprague Dawley rat kidneys are cannulated by inserting a catheter into the renal artery and perfused with a series of low-concentration detergents (Triton X-100 and sodium dodecyl sulfate (SDS)) over 26 hr to derive intact, whole-kidney scaffolds with intact perfusable vasculature, glomeruli, and renal tubules. Following decellularization, the renal scaffold is placed inside a custom-designed perfusion bioreactor vessel, and the catheterized renal artery is connected to a perfusion circuit consisting of: a peristaltic pump; tubing; and optional probes for pH, dissolved oxygen, and pressure. After sterilizing the scaffold with peracetic acid and ethanol, and balancing the pH (7.4), the kidney scaffold is prepared for seeding via perfusion of culture medium within a large-capacity incubator maintained at 37 °C and 5% CO2. Forty million renal cortical tubular epithelial (RCTE) cells are injected through the renal artery, and rapidly perfused through the scaffold under high flow (25 ml/min) and pressure (~230 mmHg) for 15 min before reducing the flow to a physiological rate (4 ml/min). RCTE cells primarily populate the tubular ECM niche within the renal cortex, proliferate, and form tubular epithelial structures over seven days of perfusion culture. A 44 µM resazurin solution in culture medium is perfused through the kidney for 1 hr during medium exchanges to provide a fluorometric, redox-based metabolic assessment of cell viability and proliferation during tubulogenesis. The kidney perfusion bioreactor permits non-invasive sampling of medium for biochemical assessment, and multiple inlet ports allow alternative retrograde seeding through the renal vein or ureter. These protocols can be used to recellularize kidney scaffolds with a variety of cell types, including vascular endothelial, tubular epithelial, and stromal fibroblasts, for rapid evaluation within this system.


Epithelial Cells/cytology , Extracellular Matrix/physiology , Kidney/cytology , Tissue Engineering/methods , Tissue Scaffolds , Animals , Bioreactors , Male , Rats , Rats, Sprague-Dawley
17.
ASAIO J ; 60(5): 545-552, 2014.
Article En | MEDLINE | ID: mdl-25010918

Transcatheter aortic valve implantation is a novel treatment for severe aortic valve stenosis. Due to the recent use of this technology and the procedural variability, there is very little data that quantify the hemodynamic consequences of variations in valve placement. Changes in aortic wall stresses and fluid retention in the sinuses of Valsalva can have a significant effect on the clinical response a patient has to the procedure. By comprehensively characterizing complex flow in the sinuses of Valsalva using digital particle image velocimetry and an advanced heart-flow simulator, various positions of a deployed transcatheter valve with respect to a bioprosthetic aortic valve (valve-in-valve) were tested in vitro. Displacements of the transcatheter valve were axial and directed below the simulated native valve annulus. It was determined that for both blood residence time and aortic Reynolds stresses, it is optimal to have the annulus of the transcatheter valve deployed as close to the aortic valve annulus as possible.


Aorta/surgery , Hemodynamics/physiology , Hydrodynamics , Transcatheter Aortic Valve Replacement/methods , Aortic Valve , Aortic Valve Stenosis/surgery , Humans , In Vitro Techniques
18.
Gastroenterology ; 145(5): 1110-20, 2013 Nov.
Article En | MEDLINE | ID: mdl-23896173

BACKGROUND & AIMS: Many patients with pancreatic ductal adenocarcinoma (PDAC) develop recurrent or metastatic diseases after surgery, so it is important to identify those most likely to benefit from aggressive therapy. Disruption of tissue microarchitecture is an early step in pancreatic tumorigenesis and a parameter used in pathology grading of glandular tumors. We investigated whether changes in gene expression during pancreatic epithelial morphogenesis were associated with outcomes of patients with PDAC after surgery. METHODS: We generated architectures of human pancreatic duct epithelial cells in a 3-dimensional basement membrane matrix. We identified gene expression profiles of the cells during different stages of tubular morphogenesis (tubulogenesis) and of PANC-1 cells during spheroid formation. Differential expression of genes was confirmed by immunoblot analysis. We compared the gene expression profile associated with pancreatic epithelial tubulogenesis with that of PDAC samples from 27 patients, as well as with their outcomes after surgery. RESULTS: We identified a gene expression profile associated with tubulogenesis that resembled the profile of human pancreatic tissue with differentiated morphology and exocrine function. Patients with PDACs with this profile fared well after surgery. Based on this profile, we established a 6-28 gene tubulogenesis-specific signature that accurately determined the prognosis of independent cohorts of patients with PDAC (total n = 128; accuracy = 81.2%-95.0%). One gene, ASPM, was down-regulated during tubulogenesis but up-regulated in human PDAC cell lines and tumor samples; up-regulation correlated with patient outcomes (Cox regression P = .0028). Bioinformatic, genetic, biochemical, functional, and clinical correlative studies showed that ASPM promotes aggressiveness of PDAC by maintaining Wnt-ß-catenin signaling and stem cell features of PDAC cells. CONCLUSIONS: We identified a gene expression profile associated with pancreatic epithelial tubulogenesis and a tissue architecture-specific signature of PDAC cells that is associated with patient outcomes after surgery.


Carcinoma, Pancreatic Ductal/pathology , Cell Differentiation/genetics , Disease Progression , Gene Expression Regulation, Neoplastic/genetics , Nerve Tissue Proteins/physiology , Pancreatic Ducts/pathology , Pancreatic Neoplasms/pathology , Transcriptome/genetics , Animals , Biomarkers, Tumor/genetics , Biomarkers, Tumor/physiology , Carcinoma, Pancreatic Ductal/genetics , Cell Differentiation/physiology , Cell Movement/genetics , Cell Movement/physiology , Disease Models, Animal , Epithelium/pathology , Follow-Up Studies , Gene Expression Regulation, Neoplastic/physiology , Heterografts , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Nerve Tissue Proteins/genetics , Pancreatic Neoplasms/genetics , Prognosis , Retrospective Studies , Signal Transduction/genetics , Signal Transduction/physiology , Transcriptome/physiology , Wnt Proteins/physiology , beta Catenin/physiology
19.
Am J Pathol ; 182(2): 363-74, 2013 Feb.
Article En | MEDLINE | ID: mdl-23219426

Histopathological classification of human prostate cancer (PCA) relies on the morphological assessment of tissue specimens but has limited prognostic value. To address this deficiency, we performed comparative transcriptome analysis of human prostatic acini generated in a three-dimensional basement membrane that recapitulates the differentiated morphological characteristics and gene expression profile of a human prostate glandular epithelial tissue. We then applied an acinar morphogenesis-specific gene profile to two independent cohorts of patients with PCA (total n = 79) and found that those with tumors expressing this profile, which we designated acini-like tumors, had a significantly lower risk of postoperative relapse compared with those tumors with a lower correlation (hazard ratio, 0.078; log-rank test P = 0.009). Multivariate analyses showed superior prognostic prediction performance using this classification system compared with clinical criteria and Gleason scores. We prioritized the genes in this profile and identified programmed cell death protein 4 (PDCD4) and Kruppel-like factor 6 (KLF6) as critical regulators and surrogate markers of prostatic tissue architectures, which form a gene signature that robustly predicts clinical prognosis with a remarkable accuracy in several large series of PCA tumors (total n = 161; concordance index, 0.913 to 0.951). Thus, by exploiting the genomic program associated with prostate glandular differentiation, we identified acini-like PCA and related molecular markers that significantly enhance prognostic prediction of human PCA.


Acinar Cells/pathology , Apoptosis Regulatory Proteins/metabolism , Gene Expression Profiling , Kruppel-Like Transcription Factors/metabolism , Morphogenesis/genetics , Prostate/pathology , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins/metabolism , RNA-Binding Proteins/metabolism , Acinar Cells/metabolism , Aged , Apoptosis Regulatory Proteins/genetics , Biomarkers, Tumor/metabolism , Cell Differentiation , Epithelial Cells/pathology , Gene Expression Regulation, Neoplastic , Humans , Kruppel-Like Factor 6 , Kruppel-Like Transcription Factors/genetics , Male , Middle Aged , Organ Specificity/genetics , Prognosis , Prostate/growth & development , Prostate/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/surgery , Proto-Oncogene Proteins/genetics , RNA-Binding Proteins/genetics , Recurrence
20.
Biomed Opt Express ; 2(8): 2243-54, 2011 Aug 01.
Article En | MEDLINE | ID: mdl-21833361

Brachytherapy seed therapy is an increasingly common way to treat prostate cancer through localized radiation. The current standard of care relies on transrectal ultrasound (TRUS) for imaging guidance during the seed placement procedure. As visualization of individual metallic seeds tends to be difficult or inaccurate under TRUS guidance, guide needles are generally tracked to infer seed placement. In an effort to improve seed visualization and placement accuracy, the use of photoacoustic (PA) imaging, which is highly sensitive to metallic objects in soft tissue, was investigated for this clinical application. The PA imaging properties of bare (i.e., embedded in pure gelatin) and tissue-embedded (at depths of up to 13 mm) seeds were investigated with a multi-wavelength (750 to 1090 nm) PA imaging technique. Results indicate that, much like ultrasonic (US) imaging, an angular dependence (i.e., seed orientation relative to imaging transducer) of the PA signal exists. Despite this shortcoming, however, PA imaging offers improved contrast, over US imaging, of a seed in prostate tissue if sufficient local fluence is achieved. Additionally, although the PA signal of a bare seed is greatest for lower laser wavelengths (e.g., 750 nm), the scattering that results from tissue tends to favor the use of higher wavelengths (e.g., 1064 nm, which is the primary wavelength of Nd:YAG lasers) when the seed is located in tissue. A combined PA and US imaging approach (i.e., PAUS imaging) shows strong potential to visualize both the seed and the surrounding anatomical environment of the prostate during brachytherapy seed placement procedures.

...