Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Matern Fetal Neonatal Med ; 35(25): 7882-7889, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34130603

RESUMEN

BACKGROUND: Down syndrome (DS) is a chromosomal disorder caused by a third copy of all or part of chromosome 21. Clinical observations and preclinical studies both suggest that DS may be associated with significant metabolic and bioenergetic alterations. But the metabolic alterations in pregnant women carrying DS fetuses still remains unclear. In this study, we investigated the characteristic metabolomics and lipidomics changes during fetal development of DS. METHODS: The AF and random urine specimens were selected from 20 pregnant women carrying DS fetuses and 20 pregnant women carrying healthy fetuses. The diagnosis of DS was screened according to chromosome karyotype analysis, and untargeted metabolomic and lipidomic analyses were performed. RESULTS: Through the analyses of AF, 308 differential metabolites were selected between DS and controls. The metabolites with significant changes mainly involved lipid molecules, organic acids, nucleotides and carbon. Further analysis of lipidomics showed 64 differential metabolites, mainly involving glycerides, sphingolipids and glycerolipids. As for urine metabolomic and lipidomic analyses, there existed consistent metabolites with AF, but the number was much less. CONCLUSIONS: Compared with the controls, carbon metabolism, amino acid metabolism, glyceride metabolism, sphingolipid metabolism and glycerophospholipid metabolism were significantly changed in DS cases. In addition, characterized biomarkers in AF and urine were screened for DS diagnosis, and these metabolites were mainly involved in energy metabolism and liver dysfunction. This finding may help improve the efficiency of prenatal screening for DS.


Asunto(s)
Síndrome de Down , Femenino , Embarazo , Humanos , Síndrome de Down/genética , Líquido Amniótico/metabolismo , Mujeres Embarazadas , Diagnóstico Prenatal , Metabolómica , Carbono/análisis , Carbono/metabolismo
2.
Sci Rep ; 11(1): 20686, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34667221

RESUMEN

A high-precision camera intrinsic parameters calibration method based on concentric circles was proposed. Different from Zhang's method, its feature points are the centers of concentric circles. First, the collinearity of the projection of the center of concentric circles and the centers of two ellipses which are imaged from the concentric circles was proved. Subsequently, a straight line passing through the center of concentric circles was determined with four tangent lines of concentric circles. Finally, the projection of the center of concentric circles was extracted with the intersection of the straight line and the line determined by the two ellipse centers. Simulation and physical experiments are carried out to analyze the factors affecting the accuracy of circle center coordinate extraction and the results show that the accuracy of the proposed method is higher. On this basis, several key parameters of the calibration target design are determined through simulation experiments and then the calibration target is printed to calibrate a binocular system. The results show that the total reprojection error of the left camera is reduced by 17.66% and that of the right camera is reduced by 21.58% compared with those of Zhang's method. Therefore, the proposed calibration method has higher accuracy.

3.
Metabolomics ; 17(9): 82, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34490587

RESUMEN

INTRODUCTION: α-Thalassemia is the most common inherited disease in southern China. The severest form is hemoglobin (Hb) Bart's disease, in which the affected fetuses almost always die in utero or shortly after birth, and the mothers are at high risk for severe morbidity. OBJECTIVE: To investigate the changes in all metabolites in fetuses with Hb Bart's disease and to characterize the metabolomic and lipidomic biomarkers in the development of Hb Bart's fetuses. METHODS: Amniotic fluid (AF) specimens were selected from 34 pregnant women who underwent interventional prenatal diagnosis from June 2017 to June 2018. Gap-PCR analysis was used to diagnose Hb Bart's disease, and untargeted metabolomic and lipidomic analyses were performed. RESULTS: By analyzing AF samples, 935 differential metabolites were selected between Hb Bart's and control fetuses. The metabolites with significant changes mainly involved D-glutamine and D-glutamate metabolism, histidine metabolism, arginine metabolism, beta-alanine metabolism and alanine, aspartate and glutamate metabolism. Further lipidomics analysis revealed 132 differential lipids, mainly involved phosphatidylcholine and triglyceride metabolism. Through the characterized metabolites in AF, a schematic model of Hb Bart's disease was established. CONCLUSION: Glutamate and glutathione metabolism, aspartate metabolism, urea metabolism and triglyceride metabolism were significantly changed in the Hb Bart's group compared to the control group. The characterized biomarkers were mainly involved in oxidative stress reaction, iron overload and liver dysfunction. This finding may help improve the treatment options for α-thalassemia as well as diagnosing phenotype of patients.


Asunto(s)
Hemoglobinas Anormales , Talasemia alfa , Líquido Amniótico , Ácido Aspártico , Biomarcadores , Femenino , Glutamatos , Humanos , Hidropesía Fetal , Lipidómica , Embarazo , Triglicéridos
5.
Nucleic Acids Res ; 48(D1): D148-D154, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31647101

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNAs (typically consisting of 18-25 nucleotides) that negatively control expression of target genes at the post-transcriptional level. Owing to the biological significance of miRNAs, miRTarBase was developed to provide comprehensive information on experimentally validated miRNA-target interactions (MTIs). To date, the database has accumulated >13,404 validated MTIs from 11,021 articles from manual curations. In this update, a text-mining system was incorporated to enhance the recognition of MTI-related articles by adopting a scoring system. In addition, a variety of biological databases were integrated to provide information on the regulatory network of miRNAs and its expression in blood. Not only targets of miRNAs but also regulators of miRNAs are provided to users for investigating the up- and downstream regulations of miRNAs. Moreover, the number of MTIs with high-throughput experimental evidence increased remarkably (validated by CLIP-seq technology). In conclusion, these improvements promote the miRTarBase as one of the most comprehensively annotated and experimentally validated miRNA-target interaction databases. The updated version of miRTarBase is now available at http://miRTarBase.cuhk.edu.cn/.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , MicroARNs/metabolismo , MicroARN Circulante/metabolismo , Minería de Datos , Regulación de la Expresión Génica , ARN Mensajero/metabolismo , Interfaz Usuario-Computador
6.
Bioresour Technol ; 101(11): 4089-95, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20116999

RESUMEN

Statistics based experimental designs were applied to optimize the culture medium components for enhancing phenazine-1-carboxylic acid (PCA) production by Pseudomonas sp. strain M18GQ, a gacA qscR double mutant of Pseudomonas sp. strain M18. The medium components, including soybean meal, glucose and corn steep liquor, had significant effects on PCA production based on a 2(5-1) fractional factorial design. The concentrations of these three significant factors were subsequently optimized using a central composite design. An optimum concentration of soybean meal 73.3g/L, corn steep liquor 18.1g/L, glucose 17.9g/L, and ethanol 18.0ml/L was obtained by response surface analysis. The predicted maximum PCA yield was as high as 4011.5mg/L, and was confirmed by validation experiments. The double mutant M18GQ produced 4032.2mg/L PCA, which was almost 2 to 3.3-fold that produced by either single mutant M18G and M18Q. The achieved production level is economically useful for industrial application.


Asunto(s)
Mutación , Pseudomonas/metabolismo , Fenazinas/metabolismo , Pseudomonas/genética , Glycine max
7.
Appl Microbiol Biotechnol ; 86(6): 1761-73, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20155354

RESUMEN

Phenazine-1-carboxylic acid (PCA) production was enhanced in Pseudomonas sp. M18 wild strain and its mutants carrying recombinant pME6032Phz for phz gene cluster overexpression, among which Pseudomonas sp. strain M18GQ/pME6032Phz, a gacA and qscR double gene chromosomally inactivated mutant harboring pME6032Phz, showed the highest PCA yield. The conditions for fermentation and isopropyl-beta-D-1-thiogalactopyranoside (IPTG) induction were optimized for strain M18GQ/pME6032Phz in shake flask experiments. A one-factor-at-a-time approach, followed by a fractional factorial design identified soybean meal, corn steep liquor, and ethanol as statistically significant factors. Optimal concentrations and mutual interactions of the factors were then determined by the method of steepest ascent and by response surface methodology based on the center composite design. The predicted PCA production was 6,335.2 mg/l after 60 h fermentation in the optimal medium of 65.02 g soybean meal, 15.36 g corn steep liquor, 12 g glucose, 21.70 ml ethanol, and 1 g MgSO(4) per liter in the flask fermentations, with induction of 1.0 mmol/l IPTG 24 h after inoculation. In an experimental validation under these conditions, the maximum PCA production was 6,365.0 mg/l. This represents a approximately 60% increase over production by strain M18GQ in optimal conditions. The negative effect of plasmid pME6032 on the expression of chromosomally located phz gene cluster was found in Pseudomonas sp. M18GQ, and the possible reason was discussed in the text.


Asunto(s)
Medios de Cultivo/química , Plásmidos , Pseudomonas/genética , Pseudomonas/metabolismo , Etanol/análisis , Etanol/metabolismo , Fermentación , Genes Bacterianos , Glucosa/análisis , Glucosa/metabolismo , Isopropil Tiogalactósido/análisis , Familia de Multigenes , Fenazinas/metabolismo , Pseudomonas/crecimiento & desarrollo , Glycine max , Transformación Bacteriana , Zea mays
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...