Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Waste Manag ; 119: 342-355, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33181450

RESUMEN

Co-gasification of municipal solid waste (MSW) with bituminous coal (BC) is an attractive alternative to realize the harmless disposal and energy harvesting of MSW. In this work, co-gasification characteristics and synergistic interaction of MSW and BC with CO2 atmosphere are studied by thermogravimetric method, including analyses of thermodynamics, kinetic parameters and reaction mechanism function. Results indicate that MSW gasification process can be divided into four main stages, and that of BC has only three main stages. Gasification temperature of coal char is much higher than that of MSW char, and addition of MSW can significantly improve the gasification reactivity of BC. Besides, a significant synergistic effect is observed for all the blends in char gasification stage. Based on three kinetic methods of Flynn-Wall-Ozawa (Xie et al., 2018), Starink (Zhang et al., 2019a) and Friedman, the minimum average activation energy Ea (184.13 kJ/mol) is obtained when the blend ratio of BC is 40% which might be an optimal option for co-gasification of the blends. The average values of the enthalpy, the Gibbs function and the entropy changes for sample 60MSW40BC are 176.82 kJ/mol, 257.89 kJ/mol and -89.16 J/mol·K, respectively. According to the Malek method, F6, A1 and D7 models are probably more suitable to describe three main stages of sample 60MSW40BC CO2 co-gasification.


Asunto(s)
Carbón Mineral , Residuos Sólidos , Biomasa , Dióxido de Carbono , Termodinámica
2.
Micromachines (Basel) ; 10(10)2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31640254

RESUMEN

Laminar convective heat transfer of elliptical minichannels is investigated for hydrodynamically fully developed but thermal developing flow with no-slip condition. A three-dimensional numerical model is developed in different elliptical geometries with the aspect ratio varying from 0.2 to 1. The effect of Reynolds number (25 ≤ Re ≤ 2000) on the local Nusselt number is examined in detail. The results indicate that the local Nusselt number is a decreasing function of Reynolds number and it is sensitive to Reynolds number especially for Re less than 250. The effect of aspect ratio on local Nusselt number is small when compared with the effect of Reynolds number on local Nusselt number. The local Nusselt number is independent of cross-section geometry at the inlet. The maximum effect of aspect ratio on local Nusselt number arises at the transition section rather than the fully developed region. However, the non-dimensional thermal entrance length is a monotonic decreasing concave function of aspect ratio but a weak function of Reynolds number. Correlations for the local Nusselt number and the thermal developing length for elliptical channels are developed with good accuracy, which may provide guidance for design and optimization of elliptical minichannel heat sinks.

3.
Micromachines (Basel) ; 10(2)2019 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-30678359

RESUMEN

The entrance region constitutes a considerable fraction of the channel length in miniaturized devices. Laminar slip flow in microchannel plate fin heat sinks under hydrodynamically developing conditions is investigated semi-analytically and numerically in this paper. The semi-analytical model for the pressure drop of microchannel plate fin heat sinks is obtained by solving the momentum equation with the first-order velocity slip boundary conditions at the channel walls. The simple pressure drop model utilizes fundamental solutions from fluid dynamics to predict its constitutive components. The accuracy of the model is examined using computational fluid dynamics (CFD) simulations and the experimental and numerical data available in the literature. The model can be applied to either apparent liquid slip over hydrophobic and superhydrophobic surfaces or gas slip flow in microchannel heat sinks. The developed model has an accuracy of 92 percent for slip flow in microchannel plate fin heat sinks. The developed model may be used to predict the pressure drop of slip flow in microchannel plate fin heat sinks for minimizing the effort and expense of experiments, especially in the design and optimization of microchannel plate fin heat sinks.

4.
Entropy (Basel) ; 21(8)2019 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-33267453

RESUMEN

The flow in channels of microdevices is usually in the developing regime. Three-dimensional laminar flow characteristics of a nanofluid in microchannel plate fin heat sinks are investigated numerically in this paper. Deionized water and Al2O3-water nanofluid are employed as the cooling fluid in our work. The effects of the Reynolds number (100 < Re < 1000), channel aspect ratio (0 < ε < 1), and nanoparticle volume fraction (0.5% < Φ < 5%) on pressure drop and entropy generation in microchannel plate fin heat sinks are examined in detail. Herein, the general expression of the entropy generation rate considering entrance effects is developed. The results revealed that the frictional entropy generation and pressure drop increase as nanoparticle volume fraction and Reynolds number increase, while decrease as the channel aspect ratio increases. When the nanoparticle volume fraction increases from 0 to 3% at Re = 500, the pressure drop of microchannel plate fin heat sinks with ε = 0.5 increases by 9%. It is demonstrated that the effect of the entrance region is crucial for evaluating the performance of microchannel plate fin heat sinks. The study may shed some light on the design and optimization of microchannel heat sinks.

5.
Micromachines (Basel) ; 9(2)2018 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-30393363

RESUMEN

Developing a three-dimensional laminar flow in the entrance region of rectangular microchannels has been investigated in this paper. When the hydrodynamic development length is the same magnitude as the microchannel length, entrance effects have to be taken into account, especially in relatively short ducts. Simultaneously, there are a variety of non-continuum or rarefaction effects, such as velocity slip and temperature jump. The available data in the literature appearing on this issue is quite limited, the available study is the semi-theoretical approximate model to predict pressure drop of developing slip flow in rectangular microchannels with different aspect ratios. In this paper, we apply the lattice Boltzmann equation method (LBE) to investigate the developing slip flow through a rectangular microchannel. The effects of the Reynolds number (1 < Re < 1000), channel aspect ratio (0 < ε < 1), and Knudsen number (0.001 < Kn < 0.1) on the dimensionless hydrodynamic entrance length, and the apparent friction factor, and Reynolds number product, are examined in detail. The numerical solution of LBM can recover excellent agreement with the available data in the literature, which proves its accuracy in capturing fundamental fluid characteristics in the slip-flow regime.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...