Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
ACS Appl Mater Interfaces ; 15(20): 24658-24669, 2023 May 24.
Article En | MEDLINE | ID: mdl-37186869

Terminal acceptor atoms and side-chain functionalization play a vital role in the construction of efficient nonfullerene small-molecule acceptors (NF-SMAs) for AM1.5G/indoor organic photovoltaic (OPV) applications. In this work, we report three dithienosilicon-bridged carbazole-based (DTSiC) ladder-type (A-DD'D-A) NF-SMAs for AM1.5G/indoor OPVs. First, we synthesize DTSiC-4F and DTSiC-2M, which are composed of a fused DTSiC-based central core with difluorinated 1,1-dicyanomethylene-3-indanone (2F-IC) and methylated IC (M-IC) end groups, respectively. Then, alkoxy chains are introduced in the fused carbazole backbone of DTSiC-4F to form DTSiCODe-4F. From solution to film absorption, DTSiC-4F exhibits a bathochromic shift with strong π-π interactions, which improves the short-circuit current density (Jsc) and the fill factor (FF). On the other hand, DTSiC-2M and DTSiCODe-4F display up-shifting lowest unoccupied molecular orbital (LUMO) energy levels, which enhances the open-circuit voltage (Voc). As a result, under both AM1.5G/indoor conditions, the devices based on PM7:DTSiC-4F, PM7:DTSiC-2M, and PM7:DTSiCOCe-4F show power conversion efficiencies (PCEs) of 13.13/21.80%, 8.62/20.02, and 9.41/20.56%, respectively. Furthermore, the addition of a third component to the active layer of binary devices is also a simple and efficient strategy to achieve higher photovoltaic efficiencies. Therefore, the conjugated polymer donor PTO2 is introduced into the PM7:DTSiC-4F active layer because of the hypsochromically shifted complementary absorption, deep highest occupied molecular orbital (HOMO) energy level, good miscibility with PM7 and DTSiC-4F, and optimal film morphology. The resulting ternary OSC device based on PTO2:PM7:DTSiC-4F can improve exciton generation, phase separation, charge transport, and charge extraction. As a consequence, the PTO2:PM7:DTSiC-4F-based ternary device achieves an outstanding PCE of 13.33/25.70% under AM1.5G/indoor conditions. As far as we know, the obtained PCE results under indoor conditions are one of the best binary/ternary-based systems processed from eco-friendly solvents.

2.
ACS Appl Mater Interfaces ; 14(36): 41264-41274, 2022 Sep 14.
Article En | MEDLINE | ID: mdl-36041037

Molecular backbone modification, alkyl-chain engineering, and end-group functionalization are promising strategies for developing efficient high-performance non-fullerene acceptors (NFAs). Herein, two new NFAs, named TPQ-eC7-4F and TPQ-eC7-4Cl, are designed and synthesized. Both molecules have linear octyl chains on fused quinoxaline-containing heterocyclics as the central backbone and difluorinated (2F)/dichlorinated (2Cl) 1,1-dicyanomethylene-3-indanone (IC) as the end-group units. The influences of alkyl-chains on fused quinoxaline backbone and different halogenated end-groups on optical, electrochemical, and photovoltaic performances of organic solar cells (OSCs) are studied. In comparison with TPQ-eC7-4Cl, TPQ-eC7-4F exhibits blue-shifted absorptions with higher molar extinction coefficients in the film state as well as in the donor/acceptor (D/A) blend film state and up-shifting lowest unoccupied molecular orbital (LUMO) energy level. As a result, the OSC devices based on the PBDB-T:TPQ-eC7-4F display an outstanding power conversion efficiency (PCE) of 15.83% with a simultaneously increased open-circuit voltage (Voc) of 0.85 V, a short-circuit current-density (Jsc) of 25.89 mA cm-2, and a fill factor (FF) of 72.20%, whereas the PBDB-T:TPQ-eC7-4Cl-based OSC device shows a decent PCE of 14.48% with a Voc of 0.84 V, a Jsc of 24.56 mA/cm2, and an FF of 69.77%. To the best of our knowledge, this is the highest photovoltaic performance of PBDB-T-based single-junction binary-OSCs. In comparison, ascribed to the high crystallinity and low solubility of BTP-eC7-4Cl, the corresponding PBDB-T:BTP-eC7-4Cl-based OSC device shows poor photovoltaic performance (PCE of 11.87%). The experimental results demonstrate that fine-tuning the fused quinoxaline backbone with alkyl-chain and end-group functionalization are promising strategies to construct high-performance NFAs for PBDB-T-based single-junction binary-OSCs.

3.
ACS Appl Mater Interfaces ; 14(19): 22353-22362, 2022 May 18.
Article En | MEDLINE | ID: mdl-35511580

The molecular design of wide-bandgap conjugated polymer donors (WB-CPDs) is a promising strategy for tuning the bulk heterojunction blend film morphologies to achieve high-performance organic photovoltaic (OPV) devices. Herein, we synthesize two WB-CPDs, namely, PBQ-H and PBQ-M, with and without methyl groups on the fused-dithieno[3,2-f:2',3'-h]quinoxaline (DTQx) moiety. We systematically investigate their structure-property relationship and OPV performances. The AFM and 2D grazing-incidence wide-angle X-ray scattering (GIWAXS) studies reveal that the PBQ-H:BO-4Cl BHJ blend shows strengthened aggregation behavior and stronger π-π stacking on face-on orientation compared with the PBQ-M:BO-4Cl BHJ blend, enhancing the phase separation, charge transport, and fill factor (FF). Blend film absorption spectra, however, show that the PBQ-H:BO-4Cl BHJ blend exhibits a lower absorption coefficient than that of the PBQ-M:BO-4Cl BHJ blend, which decreases the short-circuit current density (JSC). As a consequence, the optimized PBQ-H:BO-4Cl BHJ blend delivers a higher power conversion efficiency (PCE) of 12.88% with a JSC of 23.97 mA/cm2, an open-circuit voltage (VOC) of 0.86 V, and an FF of 62.46%, compared with the PBQ-M:BO-4Cl BHJ blend (PCE of 11.81% with a JSC of 24.78 mA/cm2, a VOC of 0.85 V, and an FF of 56.11%). Overall, this work demonstrates that alkyl group substitution on the DTQx moiety on the basis of WB-CPDs is critical for controlling the film morphology and thus obtaining high OPV performances.

4.
ACS Appl Mater Interfaces ; 14(1): 1187-1194, 2022 Jan 12.
Article En | MEDLINE | ID: mdl-34958190

Power conversion efficiencies (PCEs) and device stability are two key technical factors restricting the commercialization of organic solar cells (OSCs). In the past decades, though the PCEs of OSCs have been significantly enhanced, device instability, especially in the state-of-the-art nonfullerene system, still needs to be solved. In this work, an effective crosslinker (namely, DTODF-4F), with conjugated fluorene-based backbone and crosslinkable epoxy side-chains, has been designed and synthesized, which is introduced to enhance the morphological stabilization of the PM6:Y6-based film. This crosslinker with two epoxy groups can be in situ crosslinked into a stable network structure under ultraviolet radiation. We demonstrate that DTODF-4F, which acted as a third component, can promote the exciton dissociation rate and reduce traps/defects, finally resulting in the enhancement of efficiency. In particular, the OSC devices exhibit better stability under continuous heating owing to the morphology fixation of the bulk heterojunction. This work drives the development direction of morphological stabilization to further improve the performance and stability of OSCs.

5.
ACS Appl Mater Interfaces ; 13(49): 59043-59050, 2021 Dec 15.
Article En | MEDLINE | ID: mdl-34865485

In this work, two asymmetric non-fullerene acceptors (NFAs), BTP-EHBO-4F and BTP-PHD-4F, are designed to be applied in green-solvent-processable organic photovoltaics (OPVs). BTP-EHBO-4F and BTP-PHD-4F show good solubilities in green solvent o-xylene. As a result, PM6:BTP-EHBO-4F-based devices exhibit outstanding photovoltaic performances using o-xylene as a solvent. By comparison, due to the poor solubility of Y6 in o-xylene, PM6:Y6-based devices show poor performances. Owing to the favorable phase separation, molecule packing, and orientation observed from atomic force microscopy (AFM) and grazing-incidence wide-angle X-ray scattering (GIWAXS) measurements, PM6:BTP-PHD-4F-based devices demonstrate a PCE of 15.91% with a VOC of 0.87 V, a JSC of 25.64 mA/cm2, and an FF of 71.34%. Moreover, PM6:BTP-EHBO-4F-based devices exhibit an impressive PCE of 16.82% with a VOC of 0.85 V, a JSC of 26.12 mA/cm2, and an FF of 75.78%, which is outstanding for OPVs using o-xylene as a solvent.

6.
Acta Cardiol Sin ; 37(6): 566-573, 2021 Nov.
Article En | MEDLINE | ID: mdl-34812229

Thrombolytic therapy plays an important role in treating venous thromboembolic events in patients with unstable hemodynamics or compromised limb circulation. Standard catheter-directed thrombolysis requires a lower dosage of thrombolytic agents than systemic thrombolysis, thus lowering the risk of bleeding. Pharmacomechanical catheter- directed thrombolysis further decreases the dose of thrombolytic agents and duration of infusion. Percutaneous mechanical thrombolysis may potentially become an alternative for patients not suitable for thrombolytic agents. With an increasing number of devices and ongoing trials, endovascular therapy is a promising development that may improve both safety and efficacy in treating venous thromboembolic diseases.

7.
ACS Appl Mater Interfaces ; 13(22): 26247-26255, 2021 Jun 09.
Article En | MEDLINE | ID: mdl-34033470

In this work, two DTSiC-based nonfullerene acceptors (NFAs), (2,2'-((2Z,2'Z)-((12-(heptadecan-9-yl)-4,4,7,7-tetraoctyl-7,12-dihydro-4H-thieno[2',3':4,5]silolo[3,2-b]thieno[2',3':4,5]silolo[2,3-h]carbazole-2,9-diyl)bis(methaneylylidene))bis(3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile) (DTSiC-IC) and (2,2'-((5Z,5'Z)-((12-(heptadecan-9-yl)-4,4,7,7-tetraoctyl-7,12-dihydro-4H-thieno[2',3':4,5]silolo[3,2-b]thieno[2',3':4,5]silolo[2,3-h]carbazole-2,9-diyl)bis(methaneylylidene))bis(6-oxo-5,6-dihydro-4H-cyclopenta[c]thiophene-5,4-diylidene))dimalononitrile) (DTSiC-TC), are designed with various end groups (IC and TC). To explore the effect of end-group modifications, photovoltaic performance under AM 1.5G and indoor conditions are comprehensively studied. Compared with DTSiC-IC, DTSiC-TC manifests red-shifted and stronger absorption, downshifted lowest unoccupied molecular orbital (LUMO), and pronounced face-on packing characteristics. As we envisaged, the PM7:DTSiC-TC-based devices outperform the PM7:DTSiC-IC-based devices in both AM 1.5G and indoor (light-emitting diode (LED) 3000 K 1000 lux) conditions with overall higher JSC, FF, and power conversion efficiency (PCE). Furthermore, the PM7:DTSiC-TC-based devices achieve an outstanding PCE of 20.73% with a VOC of 0.87 V, a JSC of 0.095 mA/cm2, and an FF of 70.86%.

8.
ACS Appl Mater Interfaces ; 11(1): 1156-1162, 2019 Jan 09.
Article En | MEDLINE | ID: mdl-30525404

Integrating an additional component featuring complementary light absorption into binary polymer solar cells is a superior tactic to ameliorate solar cell efficiency and stability. An appropriate additive not only extends the absorption range but may also facilitate charge separation and transport processes. In this work, we elucidate the effects of incorporating a porphyrin-containing conjugated polymer (PPor-1), which displays absorption in 350-500 nm, into binary PTB7-Th:4TIC and PTB7-Th:ITIC blends, affording devices with an average power conversion efficiency approaching 9%. We successfully demonstrate that PPor-1 can be incorporated as an additive to impart improved Jsc (up to 19.1 mA cm-2).

...