Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(36): 23710-23721, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39229641

RESUMEN

Density functional theory (DFT) calculations at the TPSSh-D3(BJ)/def2-TZVP (SMD, water) level of theory were performed to understand the mechanism of redox-neutral depolymerization of four types of lignin-derived aryl ether dimers catalyzed by rhodium-terpyridine ([Rh]) and a binuclear Rh complex ([2Rh]). The cleavage of the Cß-O bond in the ß-O-4 model compound was initiated by the dehydrogenation of the alcohol moiety into a ketone intermediate, followed by the reductive cleavage of the ether bond, producing phenol and aromatic ketone products. The [Rh]-OH intermediate, generated by the interaction between the Rh-complex and NaOH, facilitated the transformation of the alcohol group to a CO group in the lignin model compound and subsequent H-transfer, selectively forming rhodium-H active species and the ketone intermediate. The [2Rh]-H complex exhibited high reactivity, with energy barriers for a rate-determining Cß-O bond breakage of 35.3 kcal mol-1. In contrast to 1-phenylethan-1-ol and H2, lignin itself acted as a good hydrogen source to generate [Rh]-H species. The transformation of ß-O-4 model compounds with the γ-OH group occurred via the elimination of the γ-OH group, reduction of the CC bond, and Cß-O bond cleavage steps. However, since lignin itself was unable to supply enough hydrogen to form [Rh]-H species, the aromatic products were obtained in low yields, as observed in the experiment.

2.
J Am Chem Soc ; 146(33): 23092-23102, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39108025

RESUMEN

Enantiopure Si-stereogenic organosilanes are highly valued in the fields of organic synthesis, development of advanced materials, and drug discovery. However, they are not naturally occurring, and their synthesis has been largely confined to resolution of racemic silanes or desymmetrization of symmetric silanes. In contrast, the dynamic kinetic asymmetric transformation (DYKAT) of racemic organosilanes offers a mechanistically distinct approach and would broaden the accessibility of Si-stereogenic silanes in an enantioconvergent manner. In this study, we report a Lewis base-catalyzed DYKAT of racemic chlorosilanes. The chiral isothiourea catalyst, (S)-benzotetramisole, facilitates silyletherification with phenols, yielding (R)-silylethers in good yields with high enantioselectivity (27 examples, up to 86% yield, up to 98:2 er). Kinetic analysis, control experiments, and DFT calculations suggest that a two-catalyst-bound pentacoordinate silicate is responsible for the Si-configurational epimerization of the ion-paired tetracoordinated silicon intermediates.

3.
Chem Sci ; 15(30): 12017-12025, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39092128

RESUMEN

Herein, we present an attractive organocatalytic asymmetric addition of P-nucleophiles to five-membered cyclic N-sulfonyl imines facilitated by phosphonium salt catalysis, enabling the highly enantioselective synthesis of tri- and tetra-substituted cyclic phosphorus-containing benzosultams. With this protocol, various cyclic α-aminophosphonates were efficiently synthesized with high yields and exceptional enantioselectivities (up to >99% ee) under mild reaction conditions. The utility and practicality of this method were demonstrated through gram-scale reactions and straightforward elaborations. Notably, the success of this approach relies on the deliberate selection of a synergistic organocatalytic system, which helps circumvent foreseeable side effects while handling secondary phosphine oxides (SPOs). Systematic mechanistic studies, incorporating experiments and DFT calculations, have revealed the critical importance of judiciously selecting bifunctional phosphonium salt catalysts for effectively activating P-nucleophiles while stereoselectively controlling the P-attack process.

4.
Nat Commun ; 15(1): 7420, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198410

RESUMEN

Regioselective C-H functionalization of pyridines remains a persistent challenge due to their inherent electronically deficient properties. In this report, we present a strategy for the selective pyridine C3-H thiolation, selenylation, and fluorination under mild conditions via classic N-2,4-dinitrophenyl Zincke imine intermediates. Radical inhibition and trapping experiments, as well as DFT theoretical calculations, indicated that the thiolation and selenylation proceeds through a radical addition-elimination pathway, whereas fluorination via a two-electron electrophilic substitution pathway. The pre-installed electron-deficient activating N-DNP group plays a crucial and positive role, with the additional benefit of recyclability. The practicability of this protocol was demonstrated in the gram-scale synthesis and the late-stage modification of pharmaceutically relevant pyridines.

5.
Org Lett ; 26(28): 5899-5904, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38984739

RESUMEN

Regioselective halogenation of six-membered N-heteroarenes is crucial for precise functional derivatization. We present a meta-selective halogenation method for pyridines, quinolines, and isoquinolines via electrophilic halogen radical addition utilizing an N-benzyl activation strategy. This method achieves C3- and C5-dihalogenation in pyridines, C3- and C6-dihalogenation in quinolines, and C3-monohalogenation in isoquinolines. The feasibility and potential applications of this method were validated through scale-up reactions and the bromination of quinoline derivatives with biomolecular fragments.

6.
Chemistry ; : e202402078, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976314

RESUMEN

The functionalization of aromatic N-heterocycles through silylium activation demonstrates exceptional selectivity and efficiency. Density functional theory (DFT) calculations unveil the detailed silylium catalysis mechanism and elucidate the origins of selectivity in this reaction. The phosphoramidimidate sulfonamide (PADI) precatalyst orchestrates of the catalytic cycle via three elementary steps. The Brønsted acidity of precatalyst significantly influences both the formation of silylium-based Lewis acid active species and the silylium activation of pyridine. Unlike disulfonimide (DSI)-type precatalysts, both Tf2NH and PADI precatalysts with strong acidities can easily promote the generation of activated silylium pyridine species. A semi-enclosed 'rigid' electronegative cavity in PADI-type anions constructs a well-defined recognition site, facilitating engagement with the positively charged silylium pyridine species. Due to the high electrophilicity and less steric demand at the C4-position of the pyridine substrate, the product with C4-regioselectivity was predominantly generated.

7.
Nat Commun ; 15(1): 4348, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777853

RESUMEN

The enantioselective synthesis of S-stereogenic sulfinamides has garnered considerable attention due to their structural and physicochemical properties. However, catalytic asymmetric synthesis of sulfinamides still remains daunting challenges, impeding their broad application in drug discovery and development. Here, we present an approach for the synthesis of S-stereogenic sulfinamides through peptide-mimic phosphonium salt-catalyzed asymmetric skeletal reorganization of simple prochiral and/or racemic sulfoximines. This methodology allows for the facile access to a diverse array of substituted sulfinamides with excellent enantioselectivities, accommodating various substituent patterns through desymmetrization or parallel kinetic resolution process. Mechanistic experiments, coupled with density functional theory calculations, clarify a stepwise pathway involving ring-opening and ring-closing processes, with the ring-opening step identified as crucial for achieving stereoselective control. Given the prevalence of S-stereogenic centers in pharmaceuticals, we anticipate that this protocol will enhance the efficient and precise synthesis of relevant chiral molecules and their analogs, thereby contributing to advancements in drug discovery.

8.
Angew Chem Int Ed Engl ; 63(33): e202407510, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38774971

RESUMEN

Plastic pollution is an emerging global threat due to lack of effective methods for transforming waste plastics into useful resources. Here, we demonstrate a direct oxidative upcycling of polyethylene into high-value and high-volume saturated dicarboxylic acids in high carbon yield of 85.9 % in which the carbon yield of long chain dicarboxylic (C10-C20) acids can reach 58.9% over cobalt-doped MCM-41 molecular sieves, in the absence of any solvent or precious metal catalyst. The distribution of the dicarboxylic acids can be controllably adjusted from short-chain (C4-C10) to long-chain ones (C10-C20) through changing cobalt loading of MCM-41 under nanoconfinement. Highly and sparsely dispersed cobalt along with confined space of mesoporous structure enables complete degradation of polyethylene and high selectivity of dicarboxylic acid in mild condition. So far, this is the first report on highly selective one-step preparation of long chain dicarboxylic acids. The approach provides an attractive solution to tackle plastic pollution and a promising alternative route to long chain diacids.

9.
Org Lett ; 26(16): 3366-3370, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38606985

RESUMEN

The asymmetric desymmetrizing [3+2] annulation reaction of p-quinamines and arylalkylketenes to synthesize hydroindoles was realized. Catalyzed by chiral bisguanidinium hemisalt via multiple hydrogen bond interactions, enantiomerically enriched products with reversal of diastereoselectivity in comparison with the racemic version were afforded in good yields under mild reaction conditions. Diaryl-substituted hydroindoles could also perform the Friedel-Crafts type of addition to give more complicated multicycles. Density functional theory calculations revealed that the enantio- and diastereoselectivity stem from varied hydrogen-bonding manners.

10.
Angew Chem Int Ed Engl ; 63(22): e202403707, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38520267

RESUMEN

Despite the significance of chiral allene skeletons in catalysis, organic synthesis and medicinal chemistry et al., there is a scarcity of reports on axially chiral allenyl phosphorus compounds. Here, we disclosed an efficient and straightforward cascade reaction between ethynyl ketones and phosphine oxides, resulting in a broad array of trisubstituted allenes incorporating a phosphorus moiety in high yields with excellent stereoselectivities facilitated by peptide-mimic phosphonium salt (PPS) catalysis, Additionally, comprehensive series of mechanistic experiments have been conducted to elucidate that this cascade reaction proceeds via an asymmetric Pudovik addition reaction followed by a subsequent phospha-Brook rearrangement that occurs concomitantly with kinetic resolution, representing a stereospecific rearrangement and protonation process facilitating central-to-axial chirality transfer in a cascade manner. We anticipate that our research will pave the way for a promising exploration of novel stereo-induction pattern in the Pudovik addition/phospha-Brook rearrangement cascade reaction.

11.
Chem Sci ; 14(47): 13979-13985, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38075639

RESUMEN

Due to experiencing a challenging dearomatization process, the aromatic sigmatropic rearrangement of allyl naphthyl ethers is a difficult yet efficient method to build useful naphthalenone skeletons. Here, we report a para-Claisen rearrangement-based asymmetric dearomatization of allyl α-naphthol ethers enabled by a N,N'-dioxide/CoII complex. A variety of naphthalenones were obtained in moderate to good yields with good to excellent ee values. Interestingly, by exchanging the allyl group on the ether and that at the para-position of the benzene ring, enantiodivergent synthesis can be achieved. Experimental studies and DFT calculations revealed that aryl allyl ethers tend to transform via a stepwise allyl π-complex migration pathway, while, alkyl allyl ethers transformed through a concerted ortho-Claisen rearrangement/Cope rearrangement sequence.

12.
Chem Sci ; 14(45): 13254-13264, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38023496

RESUMEN

Annularly 1,3-localized singlet diradicals are energetic and homolytic intermediates, but commonly too short-lived for widespread utilization. Herein, we describe a direct observation of a long-lived and seven-membered singlet diradical, oxepine-3,6-dione-2,7-diyl (OXPID), via spectroscopic experiments and also theoretical evidence from computational studies, which is generated via photo-induced ring-expansion of 2,3-diaryl-1,4-naphthoquinone epoxide (DNQO). The photo-generated OXPID reverts to the thermally stable σ-bonded DNQO with t1/2 in the µs level, thus constituting a novel class of T-type molecular photoswitches with high light-energy conversion efficiency (η = 7.8-33%). Meanwhile, the OXPID is equilibrated to a seven-membered cyclic 1,3-dipole as an electronic tautomer that can be captured by ring-strained dipolarophiles with an ultrafast cycloaddition rate (k2CA up to 109 M-1 s-1). The T-type photoswitchable DNQO is then exploited to be a highly selective and recyclable photoclick reagent, enabling spatiotemporal-resolved bioorthogonal ligation on living cell membranes via a tailored DNQO-Cy3 probe.

13.
Angew Chem Int Ed Engl ; 62(49): e202309515, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37845782

RESUMEN

The catalytic asymmetric synthesis of phosphorus-containing helicenes remains a formidable challenge, presumably due to the lack of rational design of substrates, right choice of reactions together with highly effective catalysis systems. Herein, we disclosed an efficient and practical DKR-involving (dynamic kinetic resolution) cascade strategy toward synthesizing a novel family of phosphorus-installing helicenes by peptide-mimic phosphonium salt (PPS) catalysis. The sequential process of PPS-catalyzed phospha-Michael attack and copper salt-facilitated aromatization led to the formation of unprecedented phosphorus-containing oxa[5]helicene scaffolds. A wide variety of substrates bearing an assortment of functional groups were compatible with this protocol, furnishing the expected helical compounds in high yields and excellent stereoselectivities. Additionally, the helical products could be conveniently elaborated to promising phosphine ligands with perfectly retained helical chirality, which turned out to be highly efficient chiral ligands in transition metal-catalyzed reactions. These findings not only expand the current library of phosphorus-containing helicenes but also offer insights to explore other challenging scaffolds with molecular chirality.

14.
Nat Commun ; 14(1): 4900, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37580365

RESUMEN

Organosilanes possessing an enantioenriched stereogenic silicon center are important in many branches of chemistry, yet they remain challenging to synthesize in a practical and scalable way. Here we report a dynamic kinetic silyletherification process of racemic chlorosilanes with (S)-lactates using 4-aminopyridine as a Lewis base catalyst. This enantioconvergent approach asymmetrically constructs the stereogenic silicon center in a different manner from traditional resolution or desymmetrization. A range of silylethers have been prepared with high diastereoselectivity on up to 10 g-scale, allowing the practical synthesis of diverse enantioenriched organosilane analogs.

15.
Nat Commun ; 14(1): 5050, 2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37598233

RESUMEN

The precise and efficient construction of axially chiral scaffolds, particularly toward the aryl-alkene atropoisomers with impeccably full enantiocontrol and highly structural diversity, remains greatly challenging. Herein, we disclose an organocatalytic asymmetric nucleophilic aromatic substitution (SNAr) reaction of aldehyde-substituted styrenes involving a dynamic kinetic resolution process via a hemiacetal intermediate, offering a novel and facile way to significant axial styrene scaffolds. Upon treatment of the aldehyde-containing styrenes bearing (o-hydroxyl)aryl unit with commonly available fluoroarenes in the presence of chiral peptide-phosphonium salts, the SNAr reaction via an exquisite bridged biaryl lactol intermediate undergoes smoothly to furnish a series of axially chiral aldehyde-containing styrenes decorated with various functionalities and bioactive fragments in high stereoselectivities (up to >99% ee) and complete E/Z selectivities. These resulting structural motifs are important building blocks for the preparation of diverse functionalized axial styrenes, which have great potential as efficient and privileged chiral ligands/catalysts in asymmetric synthesis.

16.
J Org Chem ; 88(14): 9973-9986, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37437267

RESUMEN

Density functional theory (DFT) calculations with BP86-D3(BJ) functionals were employed to reveal the mechanism and stereoselectivity of chiral guanidine/copper(I) salt-catalyzed stereoselective three-component reaction among N-sulfonyl azide, terminal alkyne, and isatin-imine for spiroazetidinimines that was first reported by Feng and Liu (Angew. Chem. Int. Ed. 2018, 57, 16852-16856). For the noncatalytic cascade reaction, the denitrogenation to generate ketenimine species was the rate-determining step, with an activation barrier of 25.8-34.8 kcal mol-1. Chiral guanidine-amide promoted the deprotonation of phenylacetylene, generating guanidine-Cu(I) acetylide complexes as active species. In azide-alkyne cycloaddition, copper acetylene coordinated to the O atom of the amide moiety in guanidium, and TsN3 was activated by hydrogen bonding, affording the Cu(I)-ketenimine species with an energy barrier of 3.5∼9.4 kcal mol-1. The optically active spiroazetidinimine oxindole was constructed via a stepwise four-membered ring formation, followed by deprotonation of guanidium moieties for C-H bonding in a stereoselective way. The steric effect of the bulky CHPh2 group and chiral backbone in the guanidine, combined with the coordination between the Boc group in isatin-imine with a copper center, played important roles in controlling the stereoselectivity of the reaction. The major spiroazetidinimine oxindole product with an SS configuration was formed in a kinetically more favored way, which was consistent with the experimental observation.

17.
Chem Commun (Camb) ; 59(53): 8250-8253, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37313723

RESUMEN

Using newly designed α-imino amide surrogates and azlactones as amphiphilic reactants, catalyzed by a chiral bifunctional guanidine, the construction of chiral 3,4-diaminopyrrolidine-2,5-diones and their derivatives was realized via formal [3+2]-cyclization. The role of guanidine as a multiple hydrogen bond donor was demonstrated by DFT calculations.


Asunto(s)
Amidas , Ciclización , Amidas/química , Catálisis , Estereoisomerismo , Guanidina/química
18.
Chem Sci ; 14(13): 3630-3641, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37006673

RESUMEN

Photo-click chemistry has emerged as a powerful tool for revolutionizing bioconjugation technologies in pharmacological and various biomimetic applications. However, enriching the photo-click reactions to expand the bioconjugation toolkit remains challenging, especially when focusing on spatiotemporal control endowed by light activation. Herein, we describe a photo-induced defluorination acyl fluoride exchange (photo-DAFEx) as a novel type of photo-click reaction that is mediated through acyl fluorides produced by the photo-defluorination of m-trifluoromethylaniline to covalently conjugate with primary/secondary amines and thiols in an aqueous environment. (TD)-DFT calculations, together with experimental discovery, indicate that the m-NH2PhF2C(sp3)-F bond in the excited triplet state is cleaved by water molecules, which is key to inducing defluorination. Intriguingly, the benzoyl amide linkages built by this photo-click reaction exhibited a satisfactory fluorogenic performance, which allowed visualization of its formation in situ. Accordingly, this photo-controlled covalent strategy was exploited not only for the decoration of small molecules, peptide cyclization and functionalization of proteins in vitro, but also for designing photo-affinity probes targeting endogenous carbonic anhydrase II (hCA-II) in living cells.

19.
Angew Chem Int Ed Engl ; 62(13): e202217887, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36700493

RESUMEN

Compared to γ-addition, the α-addition of α-branched ß,γ-unsaturated aldehydes faces larger steric hindrance and disrupts the π-π conjugation, which might be why very few examples are reported. In this article, a highly diastereo- and enantioselective α-regioselective Mannich reaction of isatin-derived ketimines with α-, ß- or γ-branched ß,γ-unsaturated aldehydes, generated in situ from Meinwald rearrangement of vinyl epoxides, is realized by using chiral N,N'-dioxide/ScIII catalysts. A series of chiral α-quaternary allyl aldehydes and homoallylic alcohols with vicinal multisubstituted stereocenters are constructed in excellent yields, good d.r. and excellent ee values. Experimental studies and DFT (density functional theory) calculations reveal that the large steric hindrance of the ligand and the Boc (tButyloxy carbonyl) protecting group of imines are critical factors for the α-regioselectivity.

20.
Angew Chem Int Ed Engl ; 62(13): e202215720, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36694276

RESUMEN

Given the comparatively lower rotational barriers, the catalytic asymmetric construction of axially chiral biaryl structures, especially those containing a five-membered heterocycle, still remains a challenge. Herein, we described a general and modular protocol to access atropisomeric arylpyrazole scaffolds containing a phosphorus unit by a dipeptide phosphonium salt catalyzed reaction involving an oxidative central-to-axial chirality conversion. This reaction features excellent yields and enantioselectivities, broad substrate scope, and a low catalyst loading, delivering axially chiral phosphine compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA