Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gels ; 9(6)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37367114

RESUMEN

The inhalation, ingestion, and body absorption of noxious gases lead to severe tissue damage, ophthalmological issues, and neurodegenerative disorders; death may even occur when recognized too late. In particular, methanol gas present in traces can cause blindness, non-reversible organ failure, and even death. Even though ample materials are available for the detection of methanol in other alcoholic analogs at ppm level, their scope is very limited because of the use of either toxic or expensive raw materials or tedious fabrication procedures. In this paper, we report on a simple synthesis of fluorescent amphiphiles achieved using a starting material derived from renewable resources, this material being methyl ricinoleate in good yields. The newly synthesized bio-based amphiphiles were prone to form a gel in a broad range of solvents. The morphology of the gel and the molecular-level interaction involved in the self-assembly process were thoroughly investigated. Rheological studies were carried out to probe the stability, thermal processability, and thixotropic behavior. In order to evaluate the potential application of the self-assembled gel in the field of sensors, we performed sensor measurements. Interestingly, the twisted fibers derived from the molecular assembly could be able to display a stable and selective response towards methanol. We believe that the bottom-up assembled system holds great promise in the environmental, healthcare, medicine, and biological fields.

2.
Nanomaterials (Basel) ; 13(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36839038

RESUMEN

The preparation method can considerably affect the structural, morphological, and gas-sensing properties of mixed-oxide materials which often demonstrate superior photocatalytic and sensing performance in comparison with single-metal oxides. In this work, hybrids of semiconductor nanomaterials based on TiO2 and ZnO were prepared by laser ablation of Zn and Ti plates in water and then tested as chemiresistive gas sensors towards volatile organics (2-propanol, acetaldehyde, ethanol, methanol) and ammonia. An infrared millisecond pulsed laser with energy 2.0 J/pulse and a repetition rate of 5 Hz was applied to Zn and Ti metal targets in different ablation sequences to produce two nano-hybrids (TiO2/ZnO and ZnO/TiO2). The surface chemistry, morphology, crystallinity, and phase composition of the prepared hybrids were found to tune their gas-sensing properties. Among all tested gases, sample TiO2/ZnO showed selectivity to ethanol, while sample ZnO/TiO2 sensed 2-propanol at room temperature, both with a detection limit of ~50 ppm. The response and recovery times were found to be 24 and 607 s for the TiO2/ZnO sensor, and 54 and 50 s for its ZnO/TiO2 counterpart, respectively, towards 100 ppm of the target gas at room temperature.

3.
ACS Omega ; 5(8): 3839-3848, 2020 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-32149210

RESUMEN

Inadvertent inhalation of various volatile organic compounds during industrial processes, such as coal and metal mining, metal manufacturing, paper and pulp industry, food processing, petroleum refining, and concrete and chemical industries, has caused an adverse effect on human health. In particular, exposure to trimethylamine (TMA), a fishy odor poisonous gas, resulted in numerous health hazards such as neurotoxicity, irritation in eyes, nose, skin, and throat, blurred vision, and many more. According to the environmental protection agency, TMA in the level of 0.10 ppm is generally considered as safe, and excess dose results in "trimethylaminuria" or "fish odor syndrome." In order to avoid the health hazards associated with the inhalation of TMA, there is an urge to design a sensor for TMA detection even at low levels for use in food-processing industries, medical diagnosis, and environment. In this report, for the first time, we have developed a TMA sensor fabric using a sequential self-assembly process from silver-incorporated glycolipids. Formation of self-assembled supramolecular architecture, interaction of the assembled structure with the cotton fabric, and sensing mechanism were completely investigated with the help of various instrumental methods. To our surprise, the developed fabric displayed a transient response for 1-500 ppm of TMA and a stable response toward 100 ppm of TMA for 15 days. We believe that the reported flexible TMA sensor fabrics developed via the sequential self-assembly process hold great promise for various innovative applications in environment, healthcare, medicine, and biology.

4.
ACS Appl Mater Interfaces ; 11(22): 20045-20055, 2019 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-31084020

RESUMEN

Integration of multifunctional nanomaterials with textiles could be a significant value addition to the bright future of the growing technology "Technical Textiles". Development of textiles with antielectromagnetic radiation and in particular antiultraviolet features could be one of the best solutions to the ozone depletion induced ultraviolet pollution of the environment, which is a major concern in the context of surging skin cancer cases. In this background, multifunctional nanoflower structured partial hydroxide nickel oxide (NiO x) was grown on cotton fabric using a chemical bath deposition technique for the development of UV filter and flexible gas/chemical sensor. X-ray diffraction patterns of bare and NiO x modified cotton fabrics confirmed the micro and poly crystalline nature, respectively. Field emission scanning electron microscopic images revealed the growth of 3D green button chrysanthemum flower-like morphology on the surface of cotton fabric. In addition, X-ray photoelectron spectra revealed the presence of nickel, carbon, and oxygen elements in the NiO x modified cotton cellulose. The increase in hydrophobic nature of surface-treated fabric was observed using a goniometer. A differential scanning calorimeter trace for bare and surface modified cotton fabrics exhibited endothermic behavior at the characteristic onset temperature. The results of thermogravimetric analysis revealed the enhanced thermal stability of up to 800 °C for the surface-treated fabric compared to bare cotton. Further, the ultraviolet protection factor (UPF) of the NiO x nanoflower modified cotton fabric was measured using an in vitro method following the AATCC 183:2004 standard using a UV transmittance analyzer. The enhanced absorbance of ultraviolet rays at 388 nm resulted in the UPF of 2000. The chemical/gas sensing features of the surface modified textile samples were investigated using the homemade gas testing chamber. NiO x modified fabric showed a selective response of 12431 toward trimethylamine at room temperature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...