Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
J Appl Clin Med Phys ; 25(5): e14343, 2024 May.
Article En | MEDLINE | ID: mdl-38569013

PURPOSE: Single-isocenter multi-target intracranial stereotactic radiotherapy (SIMT) is an effective treatment for brain metastases with complex treatment plans and delivery optimization necessitating rigorous quality assurance. This work aims to assess five methods for quality assurance of SIMT treatment plans in terms of their suitability and sensitivity to delivery errors. METHODS: Sun Nuclear ArcCHECK and SRS MapCHECK, GafChromic EBT Radiochromic Film, machine log files, and Varian Portal Dosimetry were all used to measure 15 variations of a single SIMT plan. Variations of the original plan were created with Python. They comprised various degrees of systematic MLC offsets per leaf up to 2 mm, random per-leaf variations with differing minimum and maximum magnitudes, simulated collimator, and dose miscalibrations (MU scaling). The erroneous plans were re-imported into Eclipse and plan-quality degradation was assessed by comparing each plan variation to the original clinical plan in terms of the percentage of clinical goals passing relative to the original plan. Each erroneous plan could be then ranked by the plan-quality degradation percentage following recalculation in the TPS so that the effects of each variation could be correlated with γ pass rates and detector suitability. RESULTS & CONCLUSIONS: It was found that 2%/1 mm is a good starting point for the ArcCHECK, Portal Dosimetry, and the SRS MapCHECK methods, respectively, and provides clinically relevant error detection sensitivity. Looser dose criteria of 5%/1 mm or 5%/1.5 mm are suitable for film dosimetry and log-file-based methods. The statistical methods explored can be expanded to other areas of patient-specific QA and detector assessment.


Brain Neoplasms , Quality Assurance, Health Care , Radiosurgery , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy Planning, Computer-Assisted/methods , Brain Neoplasms/radiotherapy , Radiosurgery/methods , Radiosurgery/instrumentation , Quality Assurance, Health Care/standards , Radiotherapy, Intensity-Modulated/methods , Particle Accelerators/instrumentation , Radiometry/methods , Radiometry/instrumentation , Algorithms
2.
Radiother Oncol ; 171: 121-128, 2022 06.
Article En | MEDLINE | ID: mdl-35461949

BACKGROUND: The quality of radiotherapy delivery has been shown to significantly impact clinical outcomes including patient survival. To identify errors, institutions perform Patient Specific Quality Assurance (PSQA) assessing each individual radiotherapy plan prior to starting patient treatments. Externally administered Dosimetry Audits have found problems despite institutions passing their own PSQA. Hence a new audit concept which assesses the institution's ability to detect errors with their routine PSQA is needed. METHODS: Purposefully introduced edits which simulated treatment delivery errors were embedded into radiation treatment plans of participating institutions. These were designed to produce clinically significant changes yet were mostly within treatment delivery specifications. Actual impact was centrally assessed for each plan. Institutions performed PSQA on each plan, without knowing which contained errors. RESULTS: Seventeen institutions using six radiation treatment planning systems and two delivery systems performed PSQA on twelve plans each. Seventeen erroneous plans (across seven institutions) passed PSQA despite causing >5% increase in spinal cord dose relative to the original plans. Six plans (from four institutions) passed despite a >10% increase. CONCLUSIONS: This novel audit concept evolves beyond testing an institution's ability to deliver a single test case, to increasing the number of errors caught by institutions themselves, thus increasing quality of radiation therapy and impacting every patient treated. Administered remotely this audit also provides advantages in cost, environmental impact, and logistics.


Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Clinical Trials as Topic , Humans , Quality Assurance, Health Care , Radiometry , Radiotherapy Dosage
3.
BJU Int ; 122(3): 427-433, 2018 09.
Article En | MEDLINE | ID: mdl-29520983

OBJECTIVE: To report on the dosimetric benefits and late toxicity outcomes after injection of hydrogel spacer (HS) between the prostate and rectum for patients treated with prostate radiotherapy (RT). PATIENTS AND METHODS: In all, 76 patients with a clinical stage of T1-T3a prostate cancer underwent general anaesthesia for fiducial marker insertion plus injection of the HS into the perirectal space before intensity-modulated RT (IMRT) or volumetric-modulated arc RT (VMAT). HS safety, dosimetric benefits, and the immediate- to long-term effects of gastrointestinal (GI) toxicity were assessed. RESULTS: There were no postoperative complications reported. The mean (range) prostate size was 66.0 (25.0-187.0) mm. Rectal dose volume parameters were observed and the volume of rectum receiving 70 Gy (rV70 ), 75 Gy (rV75 ) and 78 Gy (rV78 ) was 7.8%, 3.6% and 0.4%, respectively. In all, 21% of patients (16/76) developed acute Grade 1 GI toxicities, but all were resolved completely by 3 months after treatment; whilst, 3% of patients (2/76) developed late Grade 1 GI toxicities. No patients had acute or late Grade ≥2 GI toxicities. CONCLUSION: Injection of HS resulted in a reduction of irradiated rectal dose volumes along with minimal GI toxicities, irrespective of prostate size.


Fiducial Markers/adverse effects , Hydrogels/administration & dosage , Prostatic Neoplasms/radiotherapy , Radiotherapy, Intensity-Modulated/methods , Aged , Aged, 80 and over , Follow-Up Studies , Humans , Hydrogels/adverse effects , Male , Middle Aged , Prospective Studies , Prostate/pathology , Prostate/radiation effects , Radiation Injuries/epidemiology , Radiation Injuries/etiology , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/adverse effects , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/adverse effects , Rectum/radiation effects
4.
J Med Radiat Sci ; 62(2): 99-107, 2015 Jun.
Article En | MEDLINE | ID: mdl-26229674

INTRODUCTION: Intensity modulated radiotherapy (IMRT) is ideal for anal canal cancer (ACC), delivering high doses to irregular tumour volumes whilst minimising dose to surrounding normal tissues. Establishing achievable dose objectives is a challenge. The purpose of this paper was to utilise data collected in the Assessment of New Radiation Oncology Treatments and Technologies (ANROTAT) project to evaluate the feasibility of ACC IMRT dose planning objectives employed in the Australian situation. METHODS: Ten Australian centres were randomly allocated three data sets from 15 non-identifiable computed tomography data sets representing a range of disease stages and gender. Each data set was planned by two different centres, producing 30 plans. All tumour and organ at risk (OAR) contours, prescription and dose constraint details were provided. Dose-volume histograms (DVHs) for each plan were analysed to evaluate the feasibility of dose planning objectives provided. RESULTS: All dose planning objectives for the bone marrow (BM) and femoral heads were achieved. Median planned doses exceeded one or more objectives for bowel, external genitalia and bladder. This reached statistical significance for bowel V30 (P = 0.04), V45 (P < 0.001), V50 (P < 0.001), external genitalia V20 (P < 0.001) and bladder V35 (P < 0.001), V40 (P = 0.01). Gender was found to be the only significant factor in the likelihood of achieving the bowel V50 (P = 0.03) and BM V30 constraints (P = 0.04). CONCLUSION: The dose planning objectives used in the ANROTAT project provide a good starting point for ACC IMRT planning. To facilitate clinical implementation, it is important to prioritise OAR objectives and recognise factors that affect the achievability of these objectives.

5.
J Med Phys ; 31(2): 72-7, 2006 Apr.
Article En | MEDLINE | ID: mdl-21206668

X-ray computer tomography (CT) has previously been reported as an evaluation tool for polymer gel (PAG) dosimeters. In this study, the imaging protocol of a Siemens Emotion X-ray CT scanner was optimized to evaluate PAGAT normoxic gel dosimeters. The scan parameters were optimized as 130 kV and 150 mA with a slice thickness of 3 mm for smaller fields and 5 mm for larger fields of irradiation. The number of images to be averaged to reduce noise to an acceptable level was concluded to be 25. It was also concluded that the total monomer concentration required is 7% with 10 mM THP to obtain a maximum change in CT number at dose levels up to 15 Gy for evaluation with X-ray CT. Optimal scan parameters may vary with X-ray CT scanner. Hence the imaging protocol of each scanner to be used for evaluating polymer gels requires individual optimization for the purposes of gel dosimetry evaluation.

...