Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 13: 843575, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463432

RESUMEN

The CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9) method is a versatile technique that can be applied in crop refinement. Currently, the main reasons for declining agricultural yield are global warming, low rainfall, biotic and abiotic stresses, in addition to soil fertility issues caused by the use of harmful chemicals as fertilizers/additives. The declining yields can lead to inadequate supply of nutritional food as per global demand. Grains and horticultural crops including fruits, vegetables, and ornamental plants are crucial in sustaining human life. Genomic editing using CRISPR/Cas9 and nanotechnology has numerous advantages in crop development. Improving crop production using transgenic-free CRISPR/Cas9 technology and produced fertilizers, pesticides, and boosters for plants by adopting nanotechnology-based protocols can essentially overcome the universal food scarcity. This review briefly gives an overview on the potential applications of CRISPR/Cas9 and nanotechnology-based methods in developing the cultivation of major agricultural crops. In addition, the limitations and major challenges of genome editing in grains, vegetables, and fruits have been discussed in detail by emphasizing its applications in crop refinement strategy.

2.
Bioinformation ; 17(8): 727-730, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35540694

RESUMEN

Purple acid phosphatases belong to metallo-phosphatase family. Intracellular phosphatases are crucial for phosphorus (P) distribution in the cell and are highly induced in phosphorus-deprived conditions in the soil. Disparate PAP isoforms exist within discrete subcellular compartments in Setaria italica and their expression in P deprived conditions fosters phosphorus amelioration. We isolated the SiPAP18 gene and developed the homology SiPAP18 protein model based on the crystal structure of the Kidney bean PvPAP (PDB ID: 2QFP) as template (sequence similarity 42.7%) using Modeller 9.12 with adequate validation. Structure model analysis shows the significance of five conserved signatures with seven metal-paired amino acid residues during P-deprivation induced phosphorus amelioration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA