Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Bacteriol ; 205(10): e0011223, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37728605

RESUMEN

Sigma factors bind and direct the RNA polymerase core to specific promoter sequences, and alternative sigma factors direct transcription of different regulons of genes. Here, we study the pBS32 plasmid-encoded sigma factor SigN of Bacillus subtilis to determine how it contributes to DNA damage-induced cell death. We find that SigN causes cell death when expressed at high levels and does so in the absence of its regulon suggesting it is intrinsically toxic. One way toxicity was relieved was by curing the pBS32 plasmid, which eliminated a positive feedback loop that led to SigN hyper-accumulation. Another way toxicity was relieved was through mutating the chromosomally encoded transcriptional repressor protein AbrB, thereby derepressing a potent antisense transcript that antagonized SigN expression. SigN efficiently competed with the vegetative sigma factor SigA in vitro, and SigN accumulation in the absence of positive feedback reduced SigA-dependent transcription suggesting that toxicity may be due to competitive inhibition of one or more essential transcripts. Why B. subtilis encodes a toxic sigma factor is unclear but SigN may function in host-inhibition during lytic conversion, as phage lysogen genes are also encoded on pBS32. IMPORTANCE Alternative sigma factors activate entire regulons of genes to improve viability in response to environmental stimuli. The pBS32 plasmid-encoded alternative sigma factor SigN of Bacillus subtilis however, is activated by the DNA damage response and leads to cellular demise. Here we find that SigN impairs viability by hyper-accumulating and outcompeting the vegetative sigma factor for the RNA polymerase core. Why B. subtilis retains a plasmid with a deleterious alternative sigma factor is unknown.


Asunto(s)
Bacillus subtilis , Factor sigma , Factor sigma/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Inmunoglobulina A Secretora/genética , Transcripción Genética , Regulación Bacteriana de la Expresión Génica
2.
FEMS Microbiol Rev ; 47(6)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36549665

RESUMEN

Rifampicin is a clinically important antibiotic that binds to, and blocks the DNA/RNA channel of bacterial RNA polymerase (RNAP). Stalled, nonfunctional RNAPs can be removed from DNA by HelD proteins; this is important for maintenance of genome integrity. Recently, it was reported that HelD proteins from high G+C Actinobacteria, called HelR, are able to dissociate rifampicin-stalled RNAPs from DNA and provide rifampicin resistance. This is achieved by the ability of HelR proteins to dissociate rifampicin from RNAP. The HelR-mediated mechanism of rifampicin resistance is discussed here, and the roles of HelD/HelR in the transcriptional cycle are outlined. Moreover, the possibility that the structurally similar HelD proteins from low G+C Firmicutes may be also involved in rifampicin resistance is explored. Finally, the discovery of the involvement of HelR in rifampicin resistance provides a blueprint for analogous studies to reveal novel mechanisms of bacterial antibiotic resistance.


Asunto(s)
Bacterias , Rifampin , Rifampin/farmacología , Bacterias/genética , Bacterias/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , ADN
3.
J Med Chem ; 65(14): 10045-10078, 2022 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-35839126

RESUMEN

The alarming rise of bacterial antibiotic resistance requires the development of new compounds. Such compounds, lipophosphonoxins (LPPOs), were previously reported to be active against numerous bacterial species, but serum albumins abolished their activity. Here we describe the synthesis and evaluation of novel antibacterial compounds termed LEGO-LPPOs, loosely based on LPPOs, consisting of a central linker module with two attached connector modules on either side. The connector modules are then decorated with polar and hydrophobic modules. We performed an extensive structure-activity relationship study by varying the length of the linker and hydrophobic modules. The best compounds were active against both Gram-negative and Gram-positive species including multiresistant strains and persisters. LEGO-LPPOs act by first depleting the membrane potential and then creating pores in the cytoplasmic membrane. Importantly, their efficacy is not affected by the presence of serum albumins. Low cytotoxicity and low propensity for resistance development demonstrate their potential for therapeutic use.


Asunto(s)
Antibacterianos , Bacterias Grampositivas , Albúminas , Antibacterianos/química , Membrana Celular , Bacterias Gramnegativas , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad
4.
Microorganisms ; 9(1)2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33401387

RESUMEN

The expression of rRNA is one of the most energetically demanding cellular processes and, as such, it must be stringently controlled. Here, we report that DNA topology, i.e., the level of DNA supercoiling, plays a role in the regulation of Bacillus subtilis σA-dependent rRNA promoters in a growth phase-dependent manner. The more negative DNA supercoiling in exponential phase stimulates transcription from rRNA promoters, and DNA relaxation in stationary phase contributes to cessation of their activity. Novobiocin treatment of B. subtilis cells relaxes DNA and decreases rRNA promoter activity despite an increase in the GTP level, a known positive regulator of B. subtilis rRNA promoters. Comparative analyses of steps during transcription initiation then reveal differences between rRNA promoters and a control promoter, Pveg, whose activity is less affected by changes in supercoiling. Additional data then show that DNA relaxation decreases transcription also from promoters dependent on alternative sigma factors σB, σD, σE, σF, and σH with the exception of σN where the trend is the opposite. To summarize, this study identifies DNA topology as a factor important (i) for the expression of rRNA in B. subtilis in response to nutrient availability in the environment, and (ii) for transcription activities of B. subtilis RNAP holoenzymes containing alternative sigma factors.

5.
Nat Commun ; 11(1): 6419, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33339823

RESUMEN

RNA synthesis is central to life, and RNA polymerase (RNAP) depends on accessory factors for recovery from stalled states and adaptation to environmental changes. Here, we investigated the mechanism by which a helicase-like factor HelD recycles RNAP. We report a cryo-EM structure of a complex between the Mycobacterium smegmatis RNAP and HelD. The crescent-shaped HelD simultaneously penetrates deep into two RNAP channels that are responsible for nucleic acids binding and substrate delivery to the active site, thereby locking RNAP in an inactive state. We show that HelD prevents non-specific interactions between RNAP and DNA and dissociates stalled transcription elongation complexes. The liberated RNAP can either stay dormant, sequestered by HelD, or upon HelD release, restart transcription. Our results provide insights into the architecture and regulation of the highly medically-relevant mycobacterial transcription machinery and define HelD as a clearing factor that releases RNAP from nonfunctional complexes with nucleic acids.


Asunto(s)
Proteínas Bacterianas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Mycobacterium smegmatis/enzimología , Ácidos Nucleicos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/ultraestructura , Dominio Catalítico , Microscopía por Crioelectrón , ADN Bacteriano/química , ADN Bacteriano/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/ultraestructura , Modelos Moleculares , Unión Proteica , Dominios Proteicos
6.
PLoS Genet ; 16(3): e1008275, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32176689

RESUMEN

Bacillus subtilis cells are well suited to study how bacteria sense and adapt to proteotoxic stress such as heat, since temperature fluctuations are a major challenge to soil-dwelling bacteria. Here, we show that the alarmones (p)ppGpp, well known second messengers of nutrient starvation, are also involved in the heat stress response as well as the development of thermo-resistance. Upon heat-shock, intracellular levels of (p)ppGpp rise in a rapid but transient manner. The heat-induced (p)ppGpp is primarily produced by the ribosome-associated alarmone synthetase Rel, while the small alarmone synthetases RelP and RelQ seem not to be involved. Furthermore, our study shows that the generated (p)ppGpp pulse primarily acts at the level of translation, and only specific genes are regulated at the transcriptional level. These include the down-regulation of some translation-related genes and the up-regulation of hpf, encoding the ribosome-protecting hibernation-promoting factor. In addition, the alarmones appear to interact with the activity of the stress transcription factor Spx during heat stress. Taken together, our study suggests that (p)ppGpp modulates the translational capacity at elevated temperatures and thereby allows B. subtilis cells to respond to proteotoxic stress, not only by raising the cellular repair capacity, but also by decreasing translation to concurrently reduce the protein load on the cellular protein quality control system.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/genética , Respuesta al Choque Térmico/genética , Ligasas/genética , Regulación Bacteriana de la Expresión Génica/genética
7.
EMBO J ; 39(3): e102500, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31840842

RESUMEN

RNase J1 is the major 5'-to-3' bacterial exoribonuclease. We demonstrate that in its absence, RNA polymerases (RNAPs) are redistributed on DNA, with increased RNAP occupancy on some genes without a parallel increase in transcriptional output. This suggests that some of these RNAPs represent stalled, non-transcribing complexes. We show that RNase J1 is able to resolve these stalled RNAP complexes by a "torpedo" mechanism, whereby RNase J1 degrades the nascent RNA and causes the transcription complex to disassemble upon collision with RNAP. A heterologous enzyme, yeast Xrn1 (5'-to-3' exonuclease), is less efficient than RNase J1 in resolving stalled Bacillus subtilis RNAP, suggesting that the effect is RNase-specific. Our results thus reveal a novel general principle, whereby an RNase can participate in genome-wide surveillance of stalled RNAP complexes, preventing potentially deleterious transcription-replication collisions.


Asunto(s)
Bacillus subtilis/enzimología , Exorribonucleasas/metabolismo , ARN Mensajero/metabolismo , Bacillus subtilis/genética , Proteínas Bacterianas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Mensajero/genética , Transcripción Genética
8.
FEBS Lett ; 593(9): 996-1005, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30972737

RESUMEN

The HelD is a helicase-like protein binding to Bacillus subtilis RNA polymerase (RNAP), stimulating transcription in an ATP-dependent manner. Here, our small angle X-ray scattering data bring the first insights into the HelD structure: HelD is compact in shape and undergoes a conformational change upon substrate analog binding. Furthermore, the HelD domain structure is delineated, and a partial model of HelD is presented. In addition, the unique N-terminal domain of HelD is characterized as essential for its transcription-related function but not for ATPase activity, DNA binding, or binding to RNAP. The study provides a topological basis for further studies of the role of HelD in transcription.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Dispersión del Ángulo Pequeño , Difracción de Rayos X
9.
Mol Microbiol ; 111(2): 514-533, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30480837

RESUMEN

Spx is a Bacillus subtilis transcription factor that interacts with the alpha subunits of RNA polymerase. It can activate the thiol stress response regulon and interfere with the activation of many developmental processes. Here, we show that Spx is a central player orchestrating the heat shock response by up-regulating relevant stress response genes as revealed by comparative transcriptomic experiments. Moreover, these experiments revealed the potential of Spx to inhibit transcription of translation-related genes. By in vivo and in vitro experiments, we confirmed that Spx can inhibit transcription from rRNA. This inhibition depended mostly on UP elements and the alpha subunits of RNA polymerase. However, the concurrent up-regulation activity of stress genes by Spx, but not the inhibition of translation related genes, was essential for mediating stress response and antibiotic tolerance under the applied stress conditions. The observed inhibitory activity might be compensated in vivo by additional stress response processes interfering with translation. Nevertheless, the impact of Spx on limiting translation becomes apparent under conditions with high cellular Spx levels. Interestingly, we observed a subpopulation of stationary phase cells that contains raised Spx levels, which may contribute to growth inhibition and a persister-like behaviour of this subpopulation during outgrowth.


Asunto(s)
Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/efectos de la radiación , Regulación Bacteriana de la Expresión Génica , Respuesta al Choque Térmico , Estrés Oxidativo , Estrés Fisiológico , Factores de Transcripción/metabolismo , Bacillus subtilis/enzimología , Perfilación de la Expresión Génica , Biosíntesis de Proteínas , Transcripción Genética
10.
J Med Chem ; 60(14): 6098-6118, 2017 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-28654257

RESUMEN

The increase in the number of bacterial strains resistant to known antibiotics is alarming. In this study we report the synthesis of novel compounds termed Lipophosphonoxins II (LPPO II). We show that LPPO II display excellent activities against Gram-positive and -negative bacteria, including pathogens and multiresistant strains. We describe their mechanism of action-plasmatic membrane pore-forming activity selective for bacteria. Importantly, LPPO II neither damage nor cross the eukaryotic plasmatic membrane at their bactericidal concentrations. Further, we demonstrate LPPO II have low propensity for resistance development, likely due to their rapid membrane-targeting mode of action. Finally, we reveal that LPPO II are not toxic to either eukaryotic cells or model animals when administered orally or topically. Collectively, these results suggest that LPPO II are highly promising compounds for development into pharmaceuticals.


Asunto(s)
Antibacterianos/química , Uridina Monofosfato/análogos & derivados , Animales , Antibacterianos/síntesis química , Antibacterianos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Membrana Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Diseño de Fármacos , Farmacorresistencia Bacteriana Múltiple , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Membrana Dobles de Lípidos/química , Masculino , Ratones Endogámicos ICR , Pruebas de Sensibilidad Microbiana , Fosfolípidos/química , Pirazoles/síntesis química , Pirazoles/química , Pirazoles/farmacología , Conejos , Pruebas de Irritación de la Piel , Estereoisomerismo , Relación Estructura-Actividad , Uridina Monofosfato/síntesis química , Uridina Monofosfato/química , Uridina Monofosfato/farmacología
11.
Nucleic Acids Res ; 42(8): 5151-63, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24520113

RESUMEN

Bacterial RNA polymerase (RNAP) is an essential multisubunit protein complex required for gene expression. Here, we characterize YvgS (HelD) from Bacillus subtilis, a novel binding partner of RNAP. We show that HelD interacts with RNAP-core between the secondary channel of RNAP and the alpha subunits. Importantly, we demonstrate that HelD stimulates transcription in an ATP-dependent manner by enhancing transcriptional cycling and elongation. We demonstrate that the stimulatory effect of HelD can be amplified by a small subunit of RNAP, delta. In vivo, HelD is not essential but it is required for timely adaptations of the cell to changing environment. In summary, this study establishes HelD as a valid component of the bacterial transcription machinery.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Transcripción Genética , Adenosina Trifosfato/metabolismo , Bacillus subtilis/genética , Proteínas Bacterianas/aislamiento & purificación , ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/aislamiento & purificación , Fenotipo , Elongación de la Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...