Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ChemMedChem ; : e202400264, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38818693

RESUMEN

The FK506 binding protein 51 (FKBP51) is an appealing drug target due to its role in several diseases such as depression, anxiety, chronic pain and obesity. Towards this, selectivity versus the close homolog FKBP52 is essential. However, currently available FKBP51-selective ligands such as SAFit2 are too large and lack drug-like properties. Here, we present a structure activity relationship (SAR) analysis of the pipecolic ester moiety of SAFit1 and SAFit2, which culminated in the discovery of the 1,4-pyrazolyl derivative 23 d, displaying a binding affinity of 0.077 µM for FKBP51, reduced molecular weight (541.7 g/mol), lower hydrophobicity (cLogP=3.72) and higher ligand efficiency (LE=0.25). Cocrystal structures revealed the importance of the 1,4- and 1,3,4- substitution patterns of the pyrazole ring versus the 1,4,5 arrangement.

2.
JACS Au ; 3(9): 2478-2486, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37772190

RESUMEN

Sulfonamides are one of the most important pharmacophores in medicinal chemistry, and sulfonamide analogues have gained substantial interest in recent years. However, the protein interactions of sulfonamides and especially of their analogues are underexplored. Using FKBP12 as a model system, we describe the synthesis of optically pure sulfenamide, sulfinamide, and sulfonimidamide analogues of a well characterized sulfonamide ligand. This allowed us to precisely determine the binding contributions of each sulfonamide oxygen atom and the consequences of nitrogen replacements. We also present high-resolution cocrystal structures of sulfonamide analogues buried in the pocket of a protein target. This revealed intimate contacts with the protein including an unprecedented hydrogen bond acceptor of sulfonimidamides. The use of sulfonamide analogues enabled new exit vectors that allowed remodeling of a subpocket in FKBP12. Our results illuminate the protein interaction potential of sulfonamides/sulfonamide analogues and will aid in their rational design.

3.
J Med Chem ; 66(8): 5965-5980, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37058391

RESUMEN

In recent years, the selective inhibition of FKBP51 has emerged as a possible treatment for chronic pain, obesity-induced diabetes, or depression. All currently known advanced FKBP51-selective inhibitors, including the widely used SAFit2, contain a cyclohexyl residue as a key motif for enabling selectivity over the closest homologue and anti-target FKBP52. During a structure-based SAR exploration, we surprisingly discovered thiophenes as highly efficient cyclohexyl replacement moieties that retain the strong selectivity of SAFit-type inhibitors for FKBP51 over FKBP52. Cocrystal structures revealed that the thiophene-containing moieties enable selectivity by stabilizing a flipped-out conformation of Phe67 of FKBP51. Our best compound, 19b, potently binds to FKBP51 biochemically as well as in mammalian cells, desensitize TRPV1 in primary sensory neurons, and has an acceptable PK profile in mice, suggesting its use as a novel tool compound for studying FKBP51 in animal models of neuropathic pain.


Asunto(s)
Mamíferos , Proteínas de Unión a Tacrolimus , Ratones , Animales , Proteínas de Unión a Tacrolimus/metabolismo , Conformación Molecular , Mamíferos/metabolismo
4.
J Med Chem ; 64(6): 3320-3349, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33666419

RESUMEN

The FK506-binding protein 51 (FKBP51) emerged as a key player in several diseases like stress-related disorders, chronic pain, and obesity. Linear analogues of FK506 called SAFit were shown to be highly selective for FKBP51 over its closest homologue FKBP52, allowing the proof-of-concept studies in animal models. Here, we designed and synthesized the first macrocyclic FKBP51-selective ligands to stabilize the active conformation. All macrocycles retained full FKBP51 affinity and selectivity over FKBP52 and the incorporation of polar functionalities further enhanced affinity. Six high-resolution crystal structures of macrocyclic inhibitors in complex with FKBP51 confirmed the desired selectivity-enabling binding mode. Our results show that macrocyclization is a viable strategy to target the shallow FKBP51 binding site selectively.


Asunto(s)
Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/farmacología , Proteínas de Unión a Tacrolimus/antagonistas & inhibidores , Cristalografía por Rayos X , Diseño de Fármacos , Humanos , Modelos Moleculares , Conformación Proteica/efectos de los fármacos , Dominios Proteicos/efectos de los fármacos , Proteínas de Unión a Tacrolimus/química , Proteínas de Unión a Tacrolimus/metabolismo
5.
Chemistry ; 26(58): 13249-13255, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32428298

RESUMEN

Human histone deacetylase 8 is a well-recognized target for T-cell lymphoma and particularly childhood neuroblastoma. PD-404,182 was shown to be a selective covalent inhibitor of HDAC8 that forms mixed disulfides with several cysteine residues and is also able to transform thiol groups to thiocyanates. Moreover, HDAC8 was shown to be regulated by a redox switch based on the reversible formation of a disulfide bond between cysteines Cys102 and Cys153 . This study on the distinct effects of PD-404,182 on HDAC8 reveals that this compound induces the dose-dependent formation of intramolecular disulfide bridges. Therefore, the inhibition mechanism of HDAC8 by PD-404,182 involves both, covalent modification of thiols as well as ligand mediated disulfide formation. Moreover, this study provides a deep molecular insight into the regulation mechanism of HDAC8 involving several cysteines with graduated capability to form reversible disulfide bridges.

6.
Eur J Med Chem ; 184: 111756, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31630054

RESUMEN

Human histone deacetylase 8 (HDAC8) is a highly promising target for neuroblastoma and other types of cancer. Several HDAC inhibitors are approved for the treatment of special cancer subtypes or are evaluated in clinical trials. By far the most drugs or drug candidates contain a hydroxamate group that chelates the catalytic zinc ion within HDACs. Most hydroxamate inhibitors are more or less unselective, although there are considerable exceptions demonstrating the general feasibility to develop at least HDAC isoenzyme selective inhibitors. In addition, hydroxamates have recently come under discussion regarding their potential for mutagenicity. Recently, PD-404,182 was discovered as a selective and potent non-hydroxamate inhibitor of HDAC8. However, this active compound turned out to be decomposed in the presence of glutathion (GSH). Here, we describe the synthesis of significantly improved analogs of PD-404,182 that demonstrate both, great selectivity for HDAC8 and also chemical stability in the presence of GSH. The compounds are characterized with respect to structure-activity relationship, binding mode and target engagement in neuroblastoma cells by combining biochemical and biophysical methods with chemoinformatics.


Asunto(s)
Inhibidores de Histona Desacetilasas/farmacología , Proteínas Represoras/antagonistas & inhibidores , Tiazinas/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Histona Desacetilasas/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Proteínas Represoras/metabolismo , Relación Estructura-Actividad , Tiazinas/síntesis química , Tiazinas/química
7.
Biol Chem ; 400(6): 733-743, 2019 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-30521473

RESUMEN

Histone deacetylase 8 (HDAC8) is an established and validated target for T-cell lymphoma and childhood neuroblastoma. The active site binding pocket of HDAC8 is highly conserved among all zinc-containing representatives of the histone deacetylase (HDAC) family. This explains that most HDACs are unselectively recognized by similar inhibitors featuring a zinc binding group (ZBG), a hydrophobic linker and a head group. In the light of this difficulty, the creation of isoenzyme-selectivity is one of the major challenges in the development of HDAC inhibitors. In a series of trifluoromethylketone inhibitors of HDAC8 compound 10 shows a distinct binding mechanism and a dramatically increased residence time (RT) providing kinetic selectivity against HDAC4. Combining the binding kinetics results with computational docking and binding site flexibility analysis suggests that 10 occupies the conserved catalytic site as well as an adjacent transient sub-pocket of HDAC8.


Asunto(s)
Inhibidores de Histona Desacetilasas/farmacología , Proteínas Represoras/antagonistas & inhibidores , Dominio Catalítico , Histona Desacetilasas/metabolismo , Humanos , Cinética , Ligandos , Proteínas Represoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA