Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Energy Lett ; 8(12): 5116-5127, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38094752

RESUMEN

Polymer semiconductors are fascinating materials that could enable delivery of chemical fuels from water and sunlight, offering several potential advantages over their inorganic counterparts. These include extensive synthetic tunability of optoelectronic and redox properties and unique opportunities to tailor catalytic sites via chemical control over the nanoenvironment. Added to this is proven functionality of polymer semiconductors in solar cells, low-cost processability, and potential for large-area scalability. Herein we discuss recent progress on soft photoelectrochemical systems and define three critical knowledge gaps that must be closed for these materials to reach their full potential. We must (1) understand the influence of electrolyte penetration on photoinduced charge separation, transport, and recombination, (2) learn to exploit the swollen polymer/electrolyte interphase to drive selective fuel formation, and (3) establish co-design criteria for soft materials that sustain function in the face of harsh chemical challenges. Achieving these formidable goals would enable tailorable systems for driving photoelectrochemical fuel production at scale.

2.
Nanomaterials (Basel) ; 13(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37049379

RESUMEN

In this study, we developed two novel conjugated polymers that can easily be doped with F4TCNQ organic dopants using a sequential doping method and then studied their organic thermoelectric (OTE) properties. In particular, to promote the intermolecular ordering of OTE polymers in the presence of the F4TCNQ dopant, alkylthiazole-based conjugated building blocks with highly planar backbone structures were synthesized and copolymerized. All polymers showed strong molecular ordering and edge-on orientation in the film state, even in the presence of the F4TCNQ organic dopant. Thus, the sequential doping process barely changed the molecular ordering of the polymer films while making efficient molecular doping. In addition, the doping efficiency was improved in the more π-extended polymer backbones with thienothiophene units due to the emptier space in the polymer lamellar structure to locate ionized F4TCNQ. Moreover, the study of organic thin-film transistors (OTFTs) revealed that higher hole mobility in OTFTs was the key to increasing the electrical conductivity of OTE devices fabricated using the sequential doping method.

3.
ACS Appl Mater Interfaces ; 13(3): 4374-4384, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33448782

RESUMEN

Organic-inorganic hybrid CH3NH3PbBr3 (MAPbBr3) perovskite quantum dots (PQDs) are considered as promising and cost-effective building blocks for various optoelectronic devices. However, during centrifugation for the purification of these PQDs, commonly used polar protic and aprotic non-solvents (e.g., methanol and acetone) can destroy the nanocrystal structure of MAPbBr3 perovskites, which will significantly reduce the production yields and degrade the optical properties of the PQDs. This study demonstrates the use of methyl acetate (MeOAc) as an effective non-solvent for purifying as-synthesized MAPbBr3 PQDs without causing severe damage, which facilitates attainment of stable PQD solutions with high production yields. The MeOAc-washed MAPbBr3 PQDs maintain their high photoluminescence (PL) quantum yields and crystalline structures for long periods in solution states. MeOAc undergoes a hydrolysis reaction in the presence of the PQDs, and the resulting acetate anions partially replace the original surface ligands without damaging the PQD cores. Time-resolved PL analysis reveals that the MeOAc-washed PQDs show suppressed non-radiative recombination and a longer PL lifetime than acetone-washed and methanol-washed PQDs. Finally, it is demonstrated that a composite of the MAPbBr3 PQDs and a thermoplastic elastomer (polystyrene-block-polyisoprene-block-polystyrene) is feasible as a stretchable and self-healable green color filter for a white light-emitting diode device.

4.
ACS Appl Mater Interfaces ; 11(50): 47330-47339, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31741375

RESUMEN

Organic thermoelectric (TE) materials have great potential as sustainable energy sources for powering flexible and wearable electronic devices via harvesting of human body heat. Recent advances in soluble conjugated polymer/carbon nanotube (CNT) composites have facilitated achievement of high TE power factors. However, the effects of conjugated polymers on the debundling and electrical percolation of CNTs and on the TE properties of their composites are not yet fully understood. Herein, we introduce a novel type of polymer/CNT composite composed of a donor-acceptor (D-A)-type polymer and few-walled CNTs (FWCNTs). Three kinds of D-A polymers are employed to disperse FWCNTs, and the photophysical, morphological, and TE properties of the resulting polymer/FWCNT composites are compared with those of composites composed of FWCNTs dispersed with conventional donor-only poly(3-hexylthiophene). The results reveal that the strong intermolecular interaction forces and high backbone planarity of the D-A polymers facilitate effective debundling of FWCNTs, which results in much smaller bundle sizes. Consequently, the D-A polymer/FWCNT composite films show superior electrical percolation and TE performances with improved power factors of up to 459 µW/mK2. Finally, we demonstrate the feasibility of the D-A polymer/FWCNT composites for use in the fabrication of a flexible TE generator, which shows a maximum power output of 210 nW at a temperature gradient of 20 K.

5.
ACS Appl Mater Interfaces ; 10(3): 2537-2545, 2018 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-29281253

RESUMEN

The electrical conductivity and catalytic activity of nanofibrous poly(3,4-ethylenedioxythiophene)s (PEDOT NFs) was improved by redoping with dimethyl imidazolium iodide (DMII) as a charge transfer facilitator. Addition of the new DMII dopant into the PEDOT NFs reduced the concentration of dodecyl sulfate anions (DS-) predoped during the polymerization process and concomitantly enhanced the doping concentration of I- by ion exchange. Redoping with DMII increased the mobility of the PEDOT NFs by up to 18-fold and improved the conductivity due to the enhanced linearization, suppressed aggregation, and improved crystallinity of the PEDOT chains. The catalytic activity was also improved, primarily due to the increase in the compatibility and the effective surface area upon replacement of sticky DS- with the more basic and smaller I- of DMII on the surface of the PEDOT NFs. The charge-transfer resistance across the interface between the poly(ethylene oxide)-based solid polymer electrolyte and PEDOT NF counter electrode (CE) was thus reduced to a large extent, giving an energy conversion efficiency (ECE) of 8.52% for solid-state dye-sensitized solar cells (DSCs), which is even better than that achieved with Pt CE (8.25%). This is the highest ECE reported for solid-state DSCs with conductive polymer CEs under 1 sun conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...