Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Elife ; 122024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287504

RESUMEN

The integrated stress response (ISR) is a conserved pathway in eukaryotic cells that is activated in response to multiple sources of cellular stress. Although acute activation of this pathway restores cellular homeostasis, intense or prolonged ISR activation perturbs cell function and may contribute to neurodegeneration. DNL343 is an investigational CNS-penetrant small-molecule ISR inhibitor designed to activate the eukaryotic initiation factor 2B (eIF2B) and suppress aberrant ISR activation. DNL343 reduced CNS ISR activity and neurodegeneration in a dose-dependent manner in two established in vivo models - the optic nerve crush injury and an eIF2B loss of function (LOF) mutant - demonstrating neuroprotection in both and preventing motor dysfunction in the LOF mutant mouse. Treatment with DNL343 at a late stage of disease in the LOF model reversed elevation in plasma biomarkers of neuroinflammation and neurodegeneration and prevented premature mortality. Several proteins and metabolites that are dysregulated in the LOF mouse brains were normalized by DNL343 treatment, and this response is detectable in human biofluids. Several of these biomarkers show differential levels in CSF and plasma from patients with vanishing white matter disease (VWMD), a neurodegenerative disease that is driven by eIF2B LOF and chronic ISR activation, supporting their potential translational relevance. This study demonstrates that DNL343 is a brain-penetrant ISR inhibitor capable of attenuating neurodegeneration in mouse models and identifies several biomarker candidates that may be used to assess treatment responses in the clinic.


Asunto(s)
Factor 2B Eucariótico de Iniciación , Animales , Ratones , Factor 2B Eucariótico de Iniciación/metabolismo , Factor 2B Eucariótico de Iniciación/genética , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/prevención & control , Estrés Fisiológico/efectos de los fármacos , Modelos Animales de Enfermedad , Masculino , Humanos , Fármacos Neuroprotectores/farmacología , Ratones Endogámicos C57BL , Femenino , Acetamidas , Ciclohexilaminas
3.
Sci Transl Med ; 16(750): eadj7308, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38838131

RESUMEN

Progranulin (PGRN) haploinsufficiency is a major risk factor for frontotemporal lobar degeneration with TAR DNA-binding protein 43 (TDP-43) pathology (FTLD-GRN). Multiple therapeutic strategies are in clinical development to restore PGRN in the CNS, including gene therapy. However, a limitation of current gene therapy approaches aimed to alleviate FTLD-associated pathologies may be their inefficient brain exposure and biodistribution. We therefore developed an adeno-associated virus (AAV) targeting the liver (L) to achieve sustained peripheral expression of a transferrin receptor (TfR) binding, brain-penetrant (b) PGRN variant [AAV(L):bPGRN] in two mouse models of FTLD-GRN, namely, Grn knockout and GrnxTmem106b double knockout mice. This therapeutic strategy avoids potential safety and biodistribution issues of CNS-administered AAVs and maintains sustained concentrations of PGRN in the brain after a single dose. AAV(L):bPGRN treatment reduced several FTLD-GRN-associated pathologies including severe motor function deficits, aberrant TDP-43 phosphorylation, dysfunctional protein degradation, lipid metabolism, gliosis, and neurodegeneration in the brain. The potential translatability of our findings was tested in an in vitro model using cocultured human induced pluripotent stem cell (hiPSC)-derived microglia lacking PGRN and TMEM106B and wild-type hiPSC-derived neurons. As in mice, aberrant TDP-43, lysosomal dysfunction, and neuronal loss were ameliorated after treatment with exogenous TfR-binding protein transport vehicle fused to PGRN (PTV:PGRN). Together, our studies suggest that peripherally administered brain-penetrant PGRN replacement strategies ameliorate FTLD-GRN relevant phenotypes including TDP-43 pathology, neurodegeneration, and behavioral deficits. Our data provide preclinical proof of concept for the use of this AAV platform for treatment of FTLD-GRN and potentially other CNS disorders.


Asunto(s)
Encéfalo , Dependovirus , Modelos Animales de Enfermedad , Degeneración Lobar Frontotemporal , Ratones Noqueados , Progranulinas , Animales , Humanos , Ratones , Encéfalo/metabolismo , Encéfalo/patología , Dependovirus/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Degeneración Lobar Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/patología , Terapia Genética , Fosforilación , Progranulinas/metabolismo , Progranulinas/genética , Receptores de Transferrina/metabolismo
5.
bioRxiv ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38405775

RESUMEN

Background: Frontotemporal dementia (FTD) is the most common cause of early-onset dementia with 10-20% of cases caused by mutations in one of three genes: GRN, C9orf72, or MAPT. To effectively develop therapeutics for FTD, the identification and characterization of biomarkers to understand disease pathogenesis and evaluate the impact of specific therapeutic strategies on the target biology as well as the underlying disease pathology are essential. Moreover, tracking the longitudinal changes of these biomarkers throughout disease progression is crucial to discern their correlation with clinical manifestations for potential prognostic usage. Methods: We conducted a comprehensive investigation of biomarkers indicative of lysosomal biology, glial cell activation, synaptic and neuronal health in cerebrospinal fluid (CSF) and plasma from non-carrier controls, sporadic FTD (symptomatic non-carriers) and symptomatic carriers of mutations in GRN, C9orf72, or MAPT, as well as asymptomatic GRN mutation carriers. We also assessed the longitudinal changes of biomarkers in GRN mutation carriers. Furthermore, we examined biomarker levels in disease impacted brain regions including middle temporal gyrus (MTG) and superior frontal gyrus (SFG) and disease-unaffected inferior occipital gyrus (IOG) from sporadic FTD and symptomatic GRN carriers. Results: We confirmed glucosylsphingosine (GlcSph), a lysosomal biomarker regulated by progranulin, was elevated in the plasma from GRN mutation carriers, both symptomatic and asymptomatic. GlcSph and other lysosomal biomarkers such as ganglioside GM2 and globoside GB3 were increased in the disease affected SFG and MTG regions from sporadic FTD and symptomatic GRN mutation carriers, but not in the IOG, compared to the same brain regions from controls. The glial biomarkers GFAP in plasma and YKL40 in CSF were elevated in asymptomatic GRN carriers, and all symptomatic groups, except the symptomatic C9orf72 mutation group. YKL40 was also increased in SFG and MTG regions from sporadic FTD and symptomatic GRN mutation carriers. Neuronal injury and degeneration biomarkers NfL in CSF and plasma, and UCHL1 in CSF were elevated in patients with all forms of FTD. Synaptic biomarkers NPTXR, NPTX1/2, and VGF were reduced in CSF from patients with all forms of FTD, with the most pronounced reductions observed in symptomatic MAPT mutation carriers. Furthermore, we demonstrated plasma NfL was significantly positively correlated with disease severity as measured by CDR+NACC FTLD SB in genetic forms of FTD and CSF NPTXR was significantly negatively correlated with CDR+NACC FTLD SB in symptomatic GRN and MAPT mutation carriers. Conclusions: In conclusion, our comprehensive investigation replicated alterations in biofluid biomarkers indicative of lysosomal function, glial activation, synaptic and neuronal health across sporadic and genetic forms of FTD and unveiled novel insights into the dysregulation of these biomarkers within brain tissues from patients with GRN mutations. The observed correlations between biomarkers and disease severity open promising avenues for prognostic applications and for indicators of drug efficacy in clinical trials. Our data also implicated a complicated relationship between biofluid and tissue biomarker changes and future investigations should delve into the mechanistic underpinnings of these biomarkers, which will serve as a foundation for the development of targeted therapeutics for FTD.

6.
Neuron ; 112(3): 384-403.e8, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-37995685

RESUMEN

Apolipoprotein E (APOE) is a strong genetic risk factor for late-onset Alzheimer's disease (LOAD). APOE4 increases and APOE2 decreases risk relative to APOE3. In the P301S mouse model of tauopathy, ApoE4 increases tau pathology and neurodegeneration when compared with ApoE3 or the absence of ApoE. However, the role of ApoE isoforms and lipid metabolism in contributing to tau-mediated degeneration is unknown. We demonstrate that in P301S tau mice, ApoE4 strongly promotes glial lipid accumulation and perturbations in cholesterol metabolism and lysosomal function. Increasing lipid efflux in glia via an LXR agonist or Abca1 overexpression strongly attenuates tau pathology and neurodegeneration in P301S/ApoE4 mice. We also demonstrate reductions in reactive astrocytes and microglia, as well as changes in cholesterol biosynthesis and metabolism in glia of tauopathy mice in response to LXR activation. These data suggest that promoting efflux of glial lipids may serve as a therapeutic approach to ameliorate tau and ApoE4-linked neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Ratones , Animales , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteína E3/genética , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Tauopatías/tratamiento farmacológico , Tauopatías/genética , Colesterol , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Ratones Transgénicos
8.
Nat Neurosci ; 26(3): 416-429, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36635496

RESUMEN

Loss-of-function variants of TREM2 are associated with increased risk of Alzheimer's disease (AD), suggesting that activation of this innate immune receptor may be a useful therapeutic strategy. Here we describe a high-affinity human TREM2-activating antibody engineered with a monovalent transferrin receptor (TfR) binding site, termed antibody transport vehicle (ATV), to facilitate blood-brain barrier transcytosis. Upon peripheral delivery in mice, ATV:TREM2 showed improved brain biodistribution and enhanced signaling compared to a standard anti-TREM2 antibody. In human induced pluripotent stem cell (iPSC)-derived microglia, ATV:TREM2 induced proliferation and improved mitochondrial metabolism. Single-cell RNA sequencing and morphometry revealed that ATV:TREM2 shifted microglia to metabolically responsive states, which were distinct from those induced by amyloid pathology. In an AD mouse model, ATV:TREM2 boosted brain microglial activity and glucose metabolism. Thus, ATV:TREM2 represents a promising approach to improve microglial function and treat brain hypometabolism found in patients with AD.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Humanos , Animales , Ratones , Microglía , Barrera Hematoencefálica , Distribución Tisular , Anticuerpos , Encéfalo , Modelos Animales de Enfermedad , Glicoproteínas de Membrana , Receptores Inmunológicos/genética
9.
Int J Mol Sci ; 23(14)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35886926

RESUMEN

Duchenne muscular dystrophy (DMD) is a congenital myopathy caused by mutations in the dystrophin gene. DMD pathology is marked by myositis, muscle fiber degeneration, and eventual muscle replacement by fibrosis and adipose tissue. Satellite cells (SC) are muscle stem cells critical for muscle regeneration. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that promotes SC proliferation, regulates lymphocyte trafficking, and is irreversibly degraded by sphingosine phosphate lyase (SPL). Here, we show that SPL is virtually absent in normal human and murine skeletal muscle but highly expressed in inflammatory infiltrates and degenerating fibers of dystrophic DMD muscle. In mdx mice that model DMD, high SPL expression is correlated with dysregulated S1P metabolism. Perinatal delivery of the SPL inhibitor LX2931 to mdx mice augmented muscle S1P and SC numbers, reduced leukocytes in peripheral blood and skeletal muscle, and attenuated muscle inflammation and degeneration. The effect on SC was also observed in SCID/mdx mice that lack mature T and B lymphocytes. Transcriptional profiling in the skeletal muscles of LX2931-treated vs. control mdx mice demonstrated changes in innate and adaptive immune functions, plasma membrane interactions with the extracellular matrix (ECM), and axon guidance, a known function of SC. Our cumulative findings suggest that by raising muscle S1P and simultaneously disrupting the chemotactic gradient required for lymphocyte egress, SPL inhibition exerts a combination of muscle-intrinsic and systemic effects that are beneficial in the context of muscular dystrophy.


Asunto(s)
Aldehído-Liasas , Distrofia Muscular de Duchenne , Aldehído-Liasas/genética , Aldehído-Liasas/metabolismo , Animales , Modelos Animales de Enfermedad , Distrofina/genética , Humanos , Inflamación/patología , Ratones , Ratones Endogámicos mdx , Ratones SCID , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Esfingosina/metabolismo
10.
Mol Neurodegener ; 17(1): 41, 2022 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-35690868

RESUMEN

BACKGROUND: Genetic mutations underlying familial Alzheimer's disease (AD) were identified decades ago, but the field is still in search of transformative therapies for patients. While mouse models based on overexpression of mutated transgenes have yielded key insights in mechanisms of disease, those models are subject to artifacts, including random genetic integration of the transgene, ectopic expression and non-physiological protein levels. The genetic engineering of novel mouse models using knock-in approaches addresses some of those limitations. With mounting evidence of the role played by microglia in AD, high-dimensional approaches to phenotype microglia in those models are critical to refine our understanding of the immune response in the brain. METHODS: We engineered a novel App knock-in mouse model (AppSAA) using homologous recombination to introduce three disease-causing coding mutations (Swedish, Arctic and Austrian) to the mouse App gene. Amyloid-ß pathology, neurodegeneration, glial responses, brain metabolism and behavioral phenotypes were characterized in heterozygous and homozygous AppSAA mice at different ages in brain and/ or biofluids. Wild type littermate mice were used as experimental controls. We used in situ imaging technologies to define the whole-brain distribution of amyloid plaques and compare it to other AD mouse models and human brain pathology. To further explore the microglial response to AD relevant pathology, we isolated microglia with fibrillar Aß content from the brain and performed transcriptomics and metabolomics analyses and in vivo brain imaging to measure energy metabolism and microglial response. Finally, we also characterized the mice in various behavioral assays. RESULTS: Leveraging multi-omics approaches, we discovered profound alteration of diverse lipids and metabolites as well as an exacerbated disease-associated transcriptomic response in microglia with high intracellular Aß content. The AppSAA knock-in mouse model recapitulates key pathological features of AD such as a progressive accumulation of parenchymal amyloid plaques and vascular amyloid deposits, altered astroglial and microglial responses and elevation of CSF markers of neurodegeneration. Those observations were associated with increased TSPO and FDG-PET brain signals and a hyperactivity phenotype as the animals aged. DISCUSSION: Our findings demonstrate that fibrillar Aß in microglia is associated with lipid dyshomeostasis consistent with lysosomal dysfunction and foam cell phenotypes as well as profound immuno-metabolic perturbations, opening new avenues to further investigate metabolic pathways at play in microglia responding to AD-relevant pathogenesis. The in-depth characterization of pathological hallmarks of AD in this novel and open-access mouse model should serve as a resource for the scientific community to investigate disease-relevant biology.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Amiloidosis/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Microglía/metabolismo , Placa Amiloide/patología , Receptores de GABA/metabolismo
11.
Nutrients ; 14(7)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35406045

RESUMEN

Sugar intake, particularly fructose, is implicated as a factor contributing to insulin resistance via hepatic de novo lipogenesis (DNL). A nine-day fructose reduction trial, controlling for other dietary factors and weight, in children with obesity and metabolic syndrome, decreased DNL and mitigated cardiometabolic risk (CMR) biomarkers. Ceramides are bioactive sphingolipids whose dysregulated metabolism contribute to lipotoxicity, insulin resistance, and CMR. We evaluated the effect of fructose reduction on ceramides and correlations between changes observed and changes in traditional CMR biomarkers in this cohort. Analyses were completed on data from 43 participants. Mean weight decreased (-0.9 ± 1.1 kg). The majority of total and subspecies ceramide levels also decreased significantly, including dihydroceramides, deoxyceramides and ceramide-1-phoshates. Change in each primary ceramide species correlated negatively with composite insulin sensitivity index (CISI). Change in deoxyceramides positively correlated with change in DNL. These results suggest that ceramides decrease in response to dietary fructose restriction, negatively correlate with insulin sensitivity, and may represent an intermediary link between hepatic DNL, insulin resistance, and CMR.


Asunto(s)
Ceramidas , Fructosa , Obesidad Infantil , Biomarcadores/metabolismo , Factores de Riesgo Cardiometabólico , Ceramidas/metabolismo , Niño , Fructosa/administración & dosificación , Humanos , Resistencia a la Insulina/fisiología , Lipogénesis , Hígado/metabolismo
12.
Complement Ther Med ; 64: 102803, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35032556

RESUMEN

OBJECTIVES: L-Glutamine is FDA-approved for sickle cell disease (SCD), yet the mechanism(s)-of-action are poorly understood. We performed a pharmacokinetics (pK) study to determine the metabolic fate of glutamine supplementation on plasma and erythrocyte amino acids in patients with SCD. DESIGN: A pK study was performed where patients with SCD fasting for > 8 h received oral L-glutamine (10 g). Blood was analyzed at baseline, 30/60/90 min/2/3/4/8 hrs. A standardized diet was administered to all participants at 3 established time-points (after 2/5/7hrs). A subset of patients also had pK studies performed without glutamine supplementation to follow normal diurnal fluctuations in amino acids. SETTING: Comprehensive SCD Center in Oakland, California RESULTS: Five patients with SCD were included, three of whom performed pK studies both with and without glutamine supplementation. Average age was 50.6 ± 5.6 years, 60% were female, 40% SS, 60% SC. Plasma glutamine levels increased significantly after oral glutamine supplementation, compared to minimal fluctuations with diet. Plasma glutamine concentration peaked within 30-min of ingestion (p = 0.01) before decreasing to a plateau by 2-h that remained higher than baseline by 8 h. Oral glutamine also increased plasma arginine concentration, which peaked by 4-h (p = 0.03) and remained elevated through 8-h. Erythrocyte glutamine levels began to increase by 8-h, while erythrocyte arginine concentration peaked at 4-h. CONCLUSIONS: Oral glutamine supplementation acutely improved glutamine and arginine bioavailability in both plasma and erythrocytes. This is the first study to demonstrate that glutamine therapy increases arginine bioavailability and may provide insight into shared mechanisms-of-action between these conditionally-essential amino acids.


Asunto(s)
Anemia de Células Falciformes , Glutamina , Aminoácidos , Anemia de Células Falciformes/tratamiento farmacológico , Suplementos Dietéticos , Eritrocitos , Femenino , Humanos , Persona de Mediana Edad
13.
J Nutr ; 152(3): 671-679, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-34919682

RESUMEN

BACKGROUND: Rice biofortification with Zinc (Zn) can improve the Zn status of rice-consuming populations. However, the metabolic impact in humans consuming Zn-biofortified rice is unknown. OBJECTIVES: To determine the effects of Zn-biofortified rice on lipid metabolism in normolipidemic men. METHODS: The men consumed a rice-based diet containing 6 mg Zn/d and 1.5 g phytate (phytate/Zn ratio = 44) for 2 wk followed by a 10-mg Zn/d diet without phytate for 4 wk. An ad libitum diet supplemented with 25 mg Zn/d was then fed for 3 wk. Fasting blood samples were taken at baseline and at the end of each metabolic period for measuring plasma zinc, glucose, insulin, triglyceride (TG), LDL and HDL cholesterol, fatty acids, oxylipins, and fatty acid desaturase activities. Statistical differences were assessed by linear mixed model. RESULTS: Fatty acid desaturase (FADS) 1 activity decreased by 29.1% (P = 0.007) when the 6-mg Zn/d diet was consumed for 2 wk. This change was associated with significant decreases in HDL and LDL cholesterol. The alterations in FADS1, HDL cholesterol, and TG remained unchanged when Zn intakes were increased to 10 mg/d for 4 wk. Supplementation with 25 mg Zn/d for 3 wk normalized these metabolic changes and significantly increased LDL cholesterol at the end of this metabolic period compared with baseline. FADS1 activity was inversely correlated with FADS2 (rmcorr = -0.52; P = 0.001) and TG (rmcorr = -0.55; P = 0.001) at all time points. CONCLUSIONS: A low-zinc, high-phytate rice-based diet reduced plasma HDL cholesterol concentrations and altered fatty acid profiles in healthy men within 2 wk. Consuming 10 mg Zn/d without phytate for 4 wk did not improve the lipid profiles, but a 25-mg Zn/d supplement corrects these alterations in lipid metabolism within 3 wk.


Asunto(s)
Ácidos Grasos Esenciales , Ácido Fítico , HDL-Colesterol , LDL-Colesterol , Ácido Graso Desaturasas , Humanos , Metabolismo de los Lípidos , Masculino , Triglicéridos , Zinc
14.
Cell ; 184(18): 4651-4668.e25, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34450028

RESUMEN

GRN mutations cause frontotemporal dementia (GRN-FTD) due to deficiency in progranulin (PGRN), a lysosomal and secreted protein with unclear function. Here, we found that Grn-/- mice exhibit a global deficiency in bis(monoacylglycero)phosphate (BMP), an endolysosomal phospholipid we identified as a pH-dependent PGRN interactor as well as a redox-sensitive enhancer of lysosomal proteolysis and lipolysis. Grn-/- brains also showed an age-dependent, secondary storage of glucocerebrosidase substrate glucosylsphingosine. We investigated a protein replacement strategy by engineering protein transport vehicle (PTV):PGRN-a recombinant protein linking PGRN to a modified Fc domain that binds human transferrin receptor for enhanced CNS biodistribution. PTV:PGRN rescued various Grn-/- phenotypes in primary murine macrophages and human iPSC-derived microglia, including oxidative stress, lysosomal dysfunction, and endomembrane damage. Peripherally delivered PTV:PGRN corrected levels of BMP, glucosylsphingosine, and disease pathology in Grn-/- CNS, including microgliosis, lipofuscinosis, and neuronal damage. PTV:PGRN thus represents a potential biotherapeutic for GRN-FTD.


Asunto(s)
Productos Biológicos/uso terapéutico , Encéfalo/metabolismo , Enfermedades por Almacenamiento Lisosomal/terapia , Progranulinas/uso terapéutico , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Endosomas/metabolismo , Femenino , Demencia Frontotemporal/sangre , Demencia Frontotemporal/líquido cefalorraquídeo , Gliosis/complicaciones , Gliosis/patología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Inflamación/patología , Metabolismo de los Lípidos , Lipofuscina/metabolismo , Lisosomas/metabolismo , Macrófagos/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/metabolismo , Degeneración Nerviosa/patología , Fenotipo , Progranulinas/deficiencia , Progranulinas/metabolismo , Receptores Inmunológicos/metabolismo , Receptores de Transferrina/metabolismo , Distribución Tisular
15.
PLoS One ; 15(10): e0240437, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33079935

RESUMEN

BACKGROUND: Poor diets contribute to metabolic complications of obesity, insulin resistance and dyslipidemia. Metabolomic biomarkers may serve as early nutrition-sensitive health indicators. This family-based lifestyle change program compared metabolic outcomes in an intervention group (INT) that consumed 2 nutrient bars daily for 2-months and a control group (CONT). METHODS: Overweight, predominantly minority and female adolescent (Teen)/parent adult caretaker (PAC) family units were recruited from a pediatric obesity clinic. CONT (8 Teen, 8 PAC) and INT (10 Teen, 10 PAC) groups randomized to nutrient bar supplementation attended weekly classes that included group nutrition counseling and supervised exercise. Pre-post physical and behavioral parameters, fasting traditional biomarkers, plasma sphingolipids and amino acid metabolites were measured. RESULTS: In the full cohort, a baseline sphingolipid ceramide principal component composite score correlated with adiponectin, triglycerides, triglyceride-rich very low density lipoproteins, and atherogenic small low density lipoprotein (LDL) sublasses. Inverse associations were seen between a sphingomyelin composite score and C-reactive protein, a dihydroceramide composite score and diastolic blood pressure, and the final principal component that included glutathionone with fasting insulin and the homeostatic model of insulin resistance. In CONT, plasma ceramides, sphinganine, sphingosine and amino acid metabolites increased, presumably due to increased physical activity. Nutrient bar supplementation (INT) blunted this rise and significantly decreased ureagenic, aromatic and gluconeogenic amino acid metabolites. Metabolomic changes were positively correlated with improvements in clinical biomarkers of dyslipidemia. CONCLUSION: Nutrient bar supplementation with increased physical activity in obese Teens and PAC elicits favorable metabolomic changes that correlate with improved dyslipidemia. The trial from which the analyses reported upon herein was part of a series of nutrient bar clinical trials registered at clinicaltrials.gov as NCT02239198.


Asunto(s)
Terapia por Ejercicio/métodos , Metabolómica/métodos , Sobrepeso/terapia , Plasma/química , Adolescente , Adulto , Consejo , Suplementos Dietéticos , Familia , Femenino , Humanos , Estilo de Vida , Masculino , Persona de Mediana Edad , Plasma/efectos de los fármacos , Resultado del Tratamiento
16.
Nutrients ; 12(2)2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-32033078

RESUMEN

Soda consumption in adolescents has been linked to poorer metabolic outcomes. We tested whether replacing soda with reduced fat milk would improve features of atherogenic dyslipidemia and other cardiometabolic risk factors. Thirty overweight and obese adolescent boys who were habitual consumers of sugar-sweetened beverages were randomly assigned to consume 24 oz/day of sugar-sweetened soda or an energy equivalent of reduced fat (2%) milk for 3 weeks with crossover to the alternate beverage after a ≥ 2 weeks washout. Plasma lipids and lipoproteins and other laboratory measures were assessed after each beverage period. Lipid and lipoprotein measurements, C-reactive protein, and serum transaminases did not differ significantly between the soda and milk phases of the study. Systolic blood pressure z-score and uric acid concentration were significantly lower after consuming milk compared to soda. Milk consumption also significantly decreased plasma glucosyl ceramide (d18:1/C16:0) and lactosylceramides (d18:1/C16:0 and d18:1/C18:0). While no effects of replacing soda with milk on lipid and lipoprotein measurements were observed in these normolipidemic weight-stable adolescent boys, decreases in systolic blood pressure, uric acid, and glycosphingolipids suggest that an overall favorable effect on cardiometabolic risk can be achieved following a short-term dietary intervention.


Asunto(s)
Bebidas Gaseosas/efectos adversos , Ingestión de Líquidos/fisiología , Leche , Obesidad Infantil/dietoterapia , Bebidas Azucaradas/efectos adversos , Adolescente , Animales , Presión Sanguínea , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/prevención & control , Dislipidemias/dietoterapia , Dislipidemias/etiología , Glucosilceramidas/sangre , Humanos , Lactosilceramidos/sangre , Lípidos/sangre , Lipoproteínas/sangre , Masculino , Obesidad Infantil/complicaciones , Ácido Úrico/sangre
17.
Invest New Drugs ; 37(6): 1309, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31032525

RESUMEN

The authors would like to note an omission of disclosure in this paper. Author JDS is cofounder, equity-holder, and consultant of GILTRx Therapeutics.

18.
Eur Urol ; 75(6): 950-958, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30638635

RESUMEN

BACKGROUND: Increasing evidence suggests that lifestyle factors may decrease the risk of prostate cancer progression. Lifestyle guidelines and tools may support lifestyle modification after diagnosis. OBJECTIVE: To determine the feasibility and acceptability of a digital lifestyle intervention among men with prostate cancer. DESIGN, SETTING, AND PARTICIPANTS: A 12-wk pilot randomized controlled trial among 76 men with clinical stage T1-T3a prostate cancer. Eligibility included Internet access, no contraindications to aerobic exercise, and engaging in four or fewer of eight targeted behaviors at baseline. INTERVENTION: Website, Fitbit One, and text messaging to facilitate adoption of eight behaviors: vigorous activity, smoking cessation, and six diet improvements. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Our primary outcomes were feasibility and acceptability based on recruitment and user data, and surveys, respectively. Secondarily, we evaluated the change in eight lifestyle behaviors, and also objective physical activity. Each factor was assigned one point, for an overall "P8 score" (range 0-8). Analysis of covariance (ANCOVA) was conducted. Exploratory outcomes included quality of life, anthropometrics, and circulating biomarkers after 12wk, and behaviors after 1yr. RESULTS AND LIMITATIONS: At baseline, men in both arms met a median of three targeted behaviors. Sixty-four men (n=32 per arm) completed the study; 88% completed 12-wk assessments (intervention, 94%; control, 82%). Intervention participants wore their Fitbits a median of 82d (interquartile range [IQR]: 72-83), replied to a median of 71% of text messages (IQR: 57-89%), and visited the website a median of 3d (IQR: 2-5) over 12wk. Median (IQR) absolute changes in the P8 score from baseline to 12wk were 2 (1, 3) for the intervention and 0 (-1, 1) for the control arm. The estimated mean score of the intervention arm was 1.5 (95% confidence interval: 0.7, 2.3) higher than that of the control arm at 12wk (ANCOVA p<0.001). Changes were driven by diet rather than exercise. Limitations include self-reported diet and exercise data. CONCLUSIONS: Overall, in this novel pilot trial, the intervention was feasible and acceptable to men with prostate cancer. Next steps include improving the intervention to better meet individuals' needs and focusing on increasing physical activity in men not meeting nationally recommended physical activity levels. PATIENT SUMMARY: Tailored print materials combined with technology integration, including the use of a website, text messaging, and physical activity trackers, helped men with prostate cancer adopt healthy lifestyle habits, in particular recommended dietary changes, in the Prostate 8 pilot trial.


Asunto(s)
Dietoterapia , Ejercicio Físico , Monitores de Ejercicio , Internet , Aceptación de la Atención de Salud , Neoplasias de la Próstata/terapia , Envío de Mensajes de Texto , Anciano , Progresión de la Enfermedad , Estudios de Factibilidad , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Conducta de Reducción del Riesgo , Cese del Hábito de Fumar
19.
Inflamm Bowel Dis ; 24(6): 1321-1334, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29788359

RESUMEN

Goal: The aim of this study was to investigate gene expression levels of proteins involved in sphingosine-1-phosphate (S1P) metabolism and signaling in a pediatric inflammatory bowel disease (IBD) patient population. Background: IBD is a debilitating disease affecting 0.4% of the US population. The incidence of IBD in childhood is rising. Identifying effective targeted therapies that can be used safely in young patients and developing tools for selecting specific candidates for targeted therapies are important goals. Clinical IBD trials now underway target S1PR1, a receptor for the pro-inflammatory sphingolipid S1P. However, circulating and tissue sphingolipid levels and S1P-related gene expression have not been characterized in pediatric IBD. Methods: Pediatric IBD patients and controls were recruited in a four-site study. Patients received a clinical score using PUCAI or PCDAI evaluation. Colon biopsies were collected during endoscopy. Gene expression was measured by qRT-PCR. Plasma and gut tissue sphingolipids were measured by LC-MS/MS. Results: Genes of S1P synthesis (SPHK1, SPHK2), degradation (SGPL1), and signaling (S1PR1, S1PR2, and S1PR4) were significantly upregulated in colon biopsies of IBD patients with moderate/severe symptoms compared with controls or patients in remission. Tissue ceramide, dihydroceramide, and ceramide-1-phosphate (C1P) levels were significantly elevated in IBD patients compared with controls. Conclusions: A signature of elevated S1P-related gene expression in colon tissues of pediatric IBD patients correlates with active disease and normalizes in remission. Biopsied gut tissue from symptomatic IBD patients contains high levels of pro-apoptotic and pro-inflammatory sphingolipids. A combined analysis of gut tissue sphingolipid profiles with this S1P-related gene signature may be useful for monitoring response to conventional therapy.


Asunto(s)
Colon/metabolismo , Expresión Génica , Enfermedades Inflamatorias del Intestino/metabolismo , Lisofosfolípidos/metabolismo , Esfingosina/análogos & derivados , Adolescente , Animales , Estudios de Casos y Controles , Ceramidas/metabolismo , Niño , Preescolar , Cromatografía Liquida , Colon/patología , Femenino , Humanos , Lactante , Enfermedades Inflamatorias del Intestino/genética , Lisofosfolípidos/genética , Masculino , Proyectos Piloto , Transducción de Señal , Esfingosina/genética , Esfingosina/metabolismo , Espectrometría de Masas en Tándem , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA