Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chem Inf Model ; 63(12): 3941-3954, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37303117

RESUMEN

Combination therapy is a promising clinical treatment strategy for cancer and other complex diseases. Multiple drugs can target multiple proteins and pathways, greatly improving the therapeutic effect and slowing down drug resistance. To narrow the search space of synergistic drug combinations, many prediction models have been developed. However, drug combination datasets always have the characteristics of class imbalance. Synergistic drug combinations receive the most attention in clinical application but are in small numbers. To predict synergistic drug combinations in different cancer cell lines, in this study, we propose a genetic algorithm-based ensemble learning framework, GA-DRUG, to address the problems of class imbalance and high dimensionality of input data. The cell-line-specific gene expression profiles under drug perturbations are used to train GA-DRUG, which contains imbalanced data processing and the search of global optimal solutions. Compared to 11 state-of-the-art algorithms, GA-DRUG achieves the best performance and significantly improves the prediction performance in the minority class (Synergy). The ensemble framework can effectively correct the classification results of a single classifier. In addition, the cellular proliferation experiment performed on several previously unexplored drug combinations further confirms the predictive ability of GA-DRUG.


Asunto(s)
Algoritmos , Neoplasias , Humanos , Combinación de Medicamentos , Neoplasias/tratamiento farmacológico , Proteínas , Aprendizaje Automático
2.
Cell Rep Methods ; 3(2): 100411, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36936075

RESUMEN

Combination therapy is a promising approach in treating multiple complex diseases. However, the large search space of available drug combinations exacerbates challenge for experimental screening. To predict synergistic drug combinations in different cancer cell lines, we propose an improved deep forest-based method, ForSyn, and design two forest types embedded in ForSyn. ForSyn handles imbalanced and high-dimensional data in medium-/small-scale datasets, which are inherent characteristics of drug combination datasets. Compared with 12 state-of-the-art methods, ForSyn ranks first on four metrics for eight datasets with different feature combinations. We conduct a systematic analysis to identify the most appropriate configuration parameters. We validate the predictive value of ForSyn with cell-based experiments on several previously unexplored drug combinations. Finally, a systematic analysis of feature importance is performed on the top contributing features extracted by ForSyn. The resulting key genes may play key roles on corresponding cancers.


Asunto(s)
Biología Computacional , Neoplasias , Humanos , Biología Computacional/métodos , Neoplasias/tratamiento farmacológico , Combinación de Medicamentos , Línea Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA