Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
IEEE Trans Cybern ; PP2023 Dec 27.
Article En | MEDLINE | ID: mdl-38150341

In this article, a fuzzy adaptive fixed-time asymptotic consistent control scheme is developed for a class of nonlinear multiagent systems (NMASs) with a nonstrict-feedback (NSF) structure. In the control process, a fixed-time consistency control method without control singularity is proposed by combining fuzzy logic systems (FLSs) with good approximation capability, fixed-time stability theory, and plus power integration techniques. Then, by using Barbalat's Lemma, the asymptotic stability of tracking errors and the boundedness of the controlled systems are successfully achieved, which means that the tracking errors can converge to zero in a fixed time. Finally, the effectiveness of the designed control scheme is demonstrated by a simulation example.

2.
IEEE Trans Cybern ; 53(4): 2506-2515, 2023 Apr.
Article En | MEDLINE | ID: mdl-34780341

In this article, an adaptive fault-tolerant control (FTC) method and a fractional-order dynamic surface control (DSC) algorithm are jointly proposed to deal with the stabilization problem for a class of multiple-input-multiple-output (MIMO) switched fractional-order nonlinear systems with actuator faults and arbitrary switching. In each MIMO subsystem and each switched subsystem, the neural networks (NNs) are utilized to identify the complicated unknown nonlinearities. A fractional filter DSC technology is adopted to conquer the issue of "explosion of complexity," which may occur when some functions are repeatedly derived. The common Lyapunov function method is used to restrain arbitrary switching problems in the system, and the actuator compensation technique is introduced to tackle the failure faults and bias faults in the actuators. By combining the backstepping DSC design technique and fractional-order stability theory, a novel NN adaptive switching FTC algorithm is proposed. Under the operation of the proposed algorithm, the stability and control performance of the fractional-order systems can be guaranteed. Finally, a simulation example of a permanent magnet synchronous motor (PMSM) system reveals the feasibility and effectiveness of the developed scheme.

3.
IEEE Trans Neural Netw Learn Syst ; 34(10): 7222-7234, 2023 Oct.
Article En | MEDLINE | ID: mdl-35188892

This article studies the nonsingular fixed-time control problem of multiple-input multiple-output (MIMO) nonlinear systems with unmeasured states for the first time. A state observer is designed to solve the problem that system states cannot be measured. Due to the existence of the unknown system nonlinear dynamics, neural networks (NNs) are introduced to approximate them. Then, through the combination of adaptive backstepping recursive technology and adding power integration technology, a nonsingular fixed-time adaptive output feedback control algorithm is proposed, which introduces a filter to avoid the complicated derivation process of the virtual control function. According to the fixed-time Lyapunov stability theory, the practical fixed-time stability of the closed-loop system is proven, which means that all signals of the closed-loop system remain bounded in a fixed time under the proposed algorithm. Finally, the effectiveness of the proposed algorithm is verified by the numerical simulation and practical simulation.

4.
IEEE Trans Cybern ; 53(2): 732-742, 2023 Feb.
Article En | MEDLINE | ID: mdl-35468068

This article addresses the issue of the fuzzy adaptive prescribed performance control (PPC) design for nonstrict feedback multiple input multiple output (MIMO) nonlinear systems in finite time. Unknown nonlinear functions are handled via fuzzy-logic systems (FLSs). By combining the adaptive backstepping control algorithm and the nonlinear filters, a novel dynamic surface control (DSC) method is proposed, which can not only avoid the computational complexity issue but also improve the control performance in contrast to the traditional DSC control methods. Furthermore, to make the tracking errors have the prescribed performance in finite time, a new Lyapunov function is constructed by considering the transform error constraint. Based on the designed Lyapunov functions, it is proved that all the signals of the controlled systems are semiglobal practical finite-time stability (SGPFS). Finally, a simulation example is provided to illustrate the feasibility and validity of the put forward control scheme.

5.
IEEE Trans Neural Netw Learn Syst ; 32(10): 4703-4712, 2021 Oct.
Article En | MEDLINE | ID: mdl-33090956

Due to the particularity of the fractional-order derivative definition, the fractional-order control design is more complicated and difficult than the integer-order control design, and it has more practical significance. Therefore, in this article, a novel adaptive switching dynamic surface control (DSC) strategy is first presented for fractional-order nonlinear systems in the nonstrict feedback form with unknown dead zones and arbitrary switchings. In order to avoid the problem of computational complexity and to continuously obtain fractional derivatives for virtual control, the fractional-order DSC technique is applied. The virtual control law, dead-zone input, and the fractional-order adaptive laws are designed based on the fractional-order Lyapunov stability criterion. By combining the universal approximation of neural networks (NNs) and the compensation technique of unknown dead-zones, and stability theory of common Lyapunov function, an adaptive switching DSC controller is developed to ensure the stability of switched fractional-order systems in the presence of unknown dead-zone and arbitrary switchings. Finally, the validity and superiority of the proposed control method are tested by applying chaos suppression of fractional power systems and a numerical example.

6.
IEEE Trans Neural Netw Learn Syst ; 32(7): 3196-3205, 2021 Jul.
Article En | MEDLINE | ID: mdl-32790635

This article investigates the problem of neural network (NN)-based adaptive backstepping control design for stochastic nonlinear systems with unmodeled dynamics in finite-time prescribed performance. NNs are used to study the uncertain control plants, and the problem of unmodeled dynamics is tackled by the combination of the changing supply function and the dynamical signal function methods. The outstanding contribution of this article is that based on the finite-time performance function (FTPF), a modified finite-time adaptive NN control design strategy is proposed, which makes the controller design simpler. Eventually, by using the Itô's differential lemma, the backstepping recursive design technique, and the FTPFs, a novel adaptive prescribed performance tracking control scheme is presented, which can guarantee that all the variables in the control system are bounded in probability, and the tracking error can converge to a specified performance range in the finite time. Finally, both numerical simulation and applied simulation examples are provided to verify the effectiveness and applicability of the proposed method.

7.
IEEE Trans Cybern ; 50(10): 4481-4494, 2020 Oct.
Article En | MEDLINE | ID: mdl-31804948

In this article, we propose the swarm control for a self-organized system with fixed and switching topology, which can realize aggregation, dispersion, or switching formation when swarm moves. The self-organized system can automatically construct the communication topology for intelligent units in swarm. Swarm control can realize aggregation and dispersion of intelligent units based on its communication topology when swarm moves. The proposed swarm control, in which distances between the related intelligent units are time varying, is different from traditional swarm consensus or swarm formation maintenance. To design swarm control, we define the normalization adjacency matrix and normalization degree matrix based on communication topology. The communication topology is automatically generated based on relation-invariable persistent formation. Depending on whether the communication topology changes or not, the swarm control can be classified as fixed topology and switching topology. Then, the swarm control with fixed and switching topology is designed and analyzed, respectively. The swarm control can realize stability asymptotically when topology is fixed and realize stability in finite time when topology is switched. The simulation results show that the proposed approaches are effective.

8.
IEEE Trans Neural Netw Learn Syst ; 30(7): 2153-2162, 2019 Jul.
Article En | MEDLINE | ID: mdl-30442617

This paper solves the finite-time switching control issue for the nonstrict-feedback nonlinear switched systems. The controlled plants contain immeasurable states, arbitrarily switchings, and the unknown functions which are constructed with the whole states. Neural network is used to simulate the uncertain systems and a filter-based state observer is designed to estimate the immeasurable states in this paper, respectively. Based on the backstepping recursive technique and the common Lyapunov function method, a finite-time switching control method is presented. Due to the developed finite-time control strategy, the closed-loop signals can be ensured to be bounded under arbitrarily switchings, and the outputs of systems can quickly track the desired reference signals in finite time. The effectiveness of the proposed method is given through its application to a mass-spring-damper system.

9.
IEEE Trans Cybern ; 48(4): 1326-1339, 2018 Apr.
Article En | MEDLINE | ID: mdl-28534804

This paper considers the optimal decentralized fuzzy adaptive control design problem for a class of interconnected large-scale nonlinear systems in strict feedback form and with unknown nonlinear functions. The fuzzy logic systems are introduced to learn the unknown dynamics and cost functions, respectively, and a state estimator is developed. By applying the state estimator and the backstepping recursive design algorithm, a decentralized feedforward controller is established. By using the backstepping decentralized feedforward control scheme, the considered interconnected large-scale nonlinear system in strict feedback form is changed into an equivalent affine large-scale nonlinear system. Subsequently, an optimal decentralized fuzzy adaptive control scheme is constructed. The whole optimal decentralized fuzzy adaptive controller is composed of a decentralized feedforward control and an optimal decentralized control. It is proved that the developed optimal decentralized controller can ensure that all the variables of the control system are uniformly ultimately bounded, and the cost functions are the smallest. Two simulation examples are provided to illustrate the validity of the developed optimal decentralized fuzzy adaptive control scheme.

10.
IEEE Trans Cybern ; 47(2): 403-414, 2017 Feb.
Article En | MEDLINE | ID: mdl-26829814

This paper deals with the problem of adaptive fuzzy output feedback control for a class of stochastic nonlinear switched systems. The controlled system in this paper possesses unmeasured states, completely unknown nonlinear system functions, unmodeled dynamics, and arbitrary switchings. A state observer which does not depend on the switching signal is constructed to tackle the unmeasured states. Fuzzy logic systems are employed to identify the completely unknown nonlinear system functions. Based on the common Lyapunov stability theory and stochastic small-gain theorem, a new robust adaptive fuzzy backstepping stabilization control strategy is developed. The stability of the closed-loop system on input-state-practically stable in probability is proved. The simulation results are given to verify the efficiency of the proposed fuzzy adaptive control scheme.

11.
IEEE Trans Cybern ; 45(12): 2816-26, 2015 Dec.
Article En | MEDLINE | ID: mdl-25594991

In this paper, the problem of adaptive fuzzy output-feedback control is investigated for a class of uncertain switched nonlinear systems in strict-feedback form. The considered switched systems contain unknown nonlinearities, dead-zone, and immeasurable states. Fuzzy logic systems are utilized to approximate the unknown nonlinear functions, a switched fuzzy state observer is designed and thus the immeasurable states are obtained by it. By applying the adaptive backstepping design principle and the average dwell time method, an adaptive fuzzy output-feedback tracking control approach is developed. It is proved that the proposed control approach can guarantee that all the variables in the closed-loop system are bounded under a class of switching signals with average dwell time, and also that the system output can track a given reference signal as closely as possible. The simulation results are given to check the effectiveness of the proposed approach.

...