Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 522(1): 233-239, 2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31757426

RESUMEN

Iron (Fe) is a major micronutrient which influences plant growth, development, quality and yield. Although basic helix-loop-helix (bHLH) transcription factors (TFs) which respond to iron deficiency have been identified, the molecular mechanisms have not been fully elucidated. In this study, a novel bHLH TF, NtbHLH1, was found to be induced by iron deficiency. Further analysis indicated that NtbHLH1 is localized to the nucleus and functions as a transcriptional activator. Moreover, overexpression of NtbHLH1 resulted in longer roots, altered rhizosphere pH and increased ferric-chelate reductase activity in iron deficient conditions. Overall these changes resulted in increased iron uptake relative to wild type plants. NtbHLH1 mutants, on the other hand, had an opposite phenotype. In addition, transcript levels of seven genes associated with iron deficiency response were higher in the NtbHLH1 overexpression transgenic plants and lower in ntbhlh1 relative to the WT under iron deficiency treatment. Taken together, these results demonstrated that NtbHLH1 plays a key role in iron deficiency response and they provide new insights into the molecular basis of iron homeostasis in tobacco.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación de la Expresión Génica de las Plantas , Hierro/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Homeostasis , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Nicotiana/genética , Regulación hacia Arriba
2.
Nanoscale Res Lett ; 8(1): 330, 2013 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-23870061

RESUMEN

: Electron transport properties in an armchair graphene nanoribbon are theoretically investigated by considering the presence of line defect. It is found that the line defect causes the abundant Fano effects and bound state in continuum (BIC) in the electron transport process, which are tightly dependent on the width of the nanoribbon. By plotting the spectra of the density of electron states of the line defect, we see that the line defect induces some localized quantum states around the Dirac point and that the different localizations of these states lead to these two kinds of transport results. Next, the Fano effect and BIC phenomenon are detailedly described via the analysis about the influence of the structure parameters. According to the numerical results, we propose such a structure to be a promising candidate for graphene nanoswitch. PACS: 81.05.Uw, 71.55.-i, 73.23.-b, 73.25.+i.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...