Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 199, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368473

RESUMEN

Phenolic compounds are industrially versatile chemicals, also the most ubiquitous pollutants. Recently, biosynthesis and biodegradation of phenols has attracted increasing attention, while phenols' toxicity is a major issue. Here, we evolved phloroglucinol-tolerant Escherichia coli strains via adaptive evolution, and three mutations (ΔsodB, ΔclpX and fetAB overexpression) prove of great assistance in the tolerance improvement. We discover that phloroglucinol complexes with iron and promotes the generation of hydroxyl radicals in Fenton reaction, which leads to reducing power depletion, lipid peroxidation, and ferroptosis-like cell death of E. coli. Besides phloroglucinol, various phenols can trigger ferroptosis-like death in diverse organisms, from bacteria to mammalian cells. Furthermore, repressing this ferroptosis-like death improves phloroglucinol production and phenol degradation by corresponding strains respectively, showing great application potential in microbial degradation or production of desired phenolic compounds, and phloroglucinol-induced ferroptosis suppresses tumor growth in mice, indicating phloroglucinol as a promising drug for cancer treatment.


Asunto(s)
Ferroptosis , Radical Hidroxilo , Ratones , Animales , Escherichia coli/genética , Escherichia coli/metabolismo , Fenoles/farmacología , Floroglucinol/farmacología , Mamíferos
2.
Nucleic Acids Res ; 49(2): e12, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33270888

RESUMEN

The production of optimized strains of a specific phenotype requires the construction and testing of a large number of genome modifications and combinations thereof. Most bacterial iterative genome-editing methods include essential steps to eliminate selection markers, or to cure plasmids. Additionally, the presence of escapers leads to time-consuming separate single clone picking and subsequent cultivation steps. Herein, we report a genome-editing method based on a Rock-Paper-Scissors (RPS) strategy. Each of three constructed sgRNA plasmids can cure, or be cured by, the other two plasmids in the system; plasmids from a previous round of editing can be cured while the current round of editing takes place. Due to the enhanced curing efficiency and embedded double check mechanism, separate steps for plasmid curing or confirmation are not necessary, and only two times of cultivation are needed per genome-editing round. This method was successfully demonstrated in Escherichia coli and Klebsiella pneumoniae with both gene deletions and replacements. To the best of our knowledge, this is the fastest and most robust iterative genome-editing method, with the least times of cultivation decreasing the possibilities of spontaneous genome mutations.


Asunto(s)
Farmacorresistencia Microbiana/genética , Edición Génica/métodos , Plásmidos/genética , ARN Guía de Kinetoplastida/genética , Sistemas CRISPR-Cas , Cloranfenicol/farmacología , Células Clonales , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Técnicas de Inactivación de Genes , Genes Bacterianos , Kanamicina/farmacología , Resistencia a la Kanamicina/genética , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Lactatos/metabolismo , Mutación , Motivos de Nucleótidos , Regiones Promotoras Genéticas/genética , Ácido Pirúvico/metabolismo , Selección Genética , Tetraciclina/farmacología , Resistencia a la Tetraciclina/genética , Factores de Tiempo , Transformación Bacteriana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA