Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Chemosphere ; 308(Pt 2): 136378, 2022 Dec.
Article En | MEDLINE | ID: mdl-36113651

Maximizing nutrient removal and minimizing greenhouse gas (GHG) emissions is imperative for the future of wastewater treatment. As municipalities focus on minimizing their carbon footprints, future permits could regulate GHG emissions from wastewater treatment plants. This study investigates how nitrous oxide (N2O) emissions are affected by dissolved oxygen and nitrite concentrations, providing potential strategies to meet possible gaseous emission permits. A lab-scale sequencing batch reactor (SBR) was enriched with aerobic granular sludge (AGS) capable of phosphate removal and simultaneous nitrification-denitrification (SND). N2O emissions were tracked at varying dissolved oxygen (DO) and nitrite (NO2-) concentrations, with >99% SND efficiency and 93%-100% phosphate removal efficiency. Higher DO and NO2- concentrations were associated with higher N2O emissions. Emissions were minimized at a DO concentration of 1 mg L-1, with an average emission factor of 0.18% of oxidized NH3-N emitted as N2O-N, which is lower than factors from many full-scale treatment plants (Vasilaki et al., 2019) and similar to a Nereda® full-scale AGS SBR (van Dijk et al., 2021). This challenges assertions that AGS emits more N2O than conventional activated sludge, although more research at full-scale with influent quality variations is required to confirm this trend. Molecular analyses revealed that the efficient SND was likely achieved with shortcut nitrogen removal facilitated by a low presence of nitrite oxidizing bacteria and a large population of denitrifying phosphate accumulating organisms, which far outnumbered denitrifying glycogen accumulating organisms.


Greenhouse Gases , Sewage , Bioreactors/microbiology , Denitrification , Glycogen/analysis , Greenhouse Gases/analysis , Nitrification , Nitrites/analysis , Nitrogen/analysis , Nitrogen Dioxide/analysis , Nitrous Oxide/analysis , Oxygen/analysis , Phosphates/analysis , Sewage/microbiology , Wastewater/analysis
2.
Water Res ; 198: 117119, 2021 Jun 15.
Article En | MEDLINE | ID: mdl-33957310

An aerobic granular sludge (AGS) pilot plant fed with a mixture of acetate amended centrate and secondary effluent was used to investigate the optimal granule size range for simultaneous nitrification and denitrification (SND) and ortho-phosphate removal. The anaerobic phase was mixed to understand how AGS will perform if integrated with a continuous flow activated sludge system that cannot feed the influent through the settled sludge bed. Five different granule size fractions were taken from the pilot (operated at DO setpoint of 2mgO2/L) and each size was subjected to activity tests in a well-controlled lab-scale AGS reactor at four dissolved oxygen (DO) concentrations of 1, 2, 3, and 4 mgO2/L. The size fractions were: 212 - 600 µm, 600 - 1000 µm, 1000 - 1400 µm, 1400 - 2000 µm, and >2000 µm. The smallest size range (212 - 600 µm) had the highest nitrification and phosphate removal rates at DO setpoints from 1 - 3 mgO2/L, which was attributed to the higher aerobic volume fraction in small granules and hence a higher abundance of phosphorus accumulating organisms (PAO) and ammonia oxidizing bacteria (AOB). In comparison, large granules (>1000 µm) had 1.4 - 4.7 times lower ammonia oxidation rates than the smallest size range, which aligned with their lower AOB abundance relative to granule biomass. The granules with the highest anoxic volume fraction had the highest abundance of nitrite reductase genes (nir gene) but did not show the highest specific nitrogen removal rate. Instead, smaller granules (212 - 600 and 600 - 1000 µm), which had a lower nir gene abundance, had the highest specific nitrogen removal rates (1.2 - 3.1 times higher than larger granules) across all DO values except at 4 mgO2/L. At a DO setpoint of 4 mgO2/L, nitrite production by ammonia oxidation (ammonia monooxygenase) exceeded nitrite reduction by nitrite reductase in granules smaller than 1000 µm, in addition, some denitrifying heterotrophs switched to oxygen utilization in deeper layers hence suppressing denitrification activity. At the DO range of 2 - 4 mg/L, granular size had a greater effect on nutrient removal than DO. Therefore, for AGS developed at an average DO setpoint of 2 mgO2/L, selecting for size fractions in the range of 212 - 1000 µm and avoiding DO values higher than 3 mgO2/L can achieve both a higher nitrogen removal capacity and energy savings. This study is the first to investigate the influence of different DO values on SND and biological phosphorus removal performance of different aerobic granular sludge sizes.


Nitrogen , Sewage , Bioreactors , Denitrification , Nitrification , Nitrogen/analysis , Phosphates , Phosphorus , Waste Disposal, Fluid
3.
Water Res ; 188: 116445, 2021 Jan 01.
Article En | MEDLINE | ID: mdl-33039834

The relationship between ammonia oxidation rate, nitrifiers population, and modelled aerobic zone volume in different granule sizes was investigated using aerobic granular sludge from a pilot-scale reactor. The pilot was fed with centrate and secondary effluent amended with acetate as the main carbon source. The maximum specific ammonia oxidation rates and community composition of different aerobic granular sludge size fractions were evaluated by batch tests, quantitative PCR, and genomic analysis. Small (331µm) granules had a 4.72 ± 0.09 times higher maximum specific ammonia oxidizing rate per 1 gVSS, and a 4.05 ± 0.17 times higher specific amoA gene copy number than large (2225µm) granules per 1 gram of wet biomass. However, when related to surface area, small granules had 1.43 ± 0.01 times lower maximum specific ammonia oxidation rate and a 1.66 ± 0.04 times lower specific amoA gene copy number per unit surface than large granules. Experimental results aligned with modeling results in which smaller granules had a higher specific aerobic zone volume to biomass and lower specific aerobic zone volume to surface area. Aerobic granular sludge reactors having the same average diameter of granules may have very different proportions of granule size fractions and hence possess different nitrification rates. Therefore, instead of the commonly reported average granule diameter, a new method was proposed to determine the aerobic volume density per sample, which correlated well with the nitrification rate. This work provides a roadmap to control nitrification capacity by two methods: (a) crushing larger granules into smaller fractions, or (b) increasing the mixed liquor suspended solid concentration to increase the total aerobic zone volume of the system.


Nitrification , Sewage , Aerobiosis , Ammonia , Biomass , Bioreactors , Waste Disposal, Fluid
...