Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 1148, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39278937

RESUMEN

The formation of nuclear biomolecular condensates is often associated with local accumulation of proteins at a site of DNA damage. The key role in the formation of DNA repair foci belongs to PARP1, which is a sensor of DNA damage and catalyzes the synthesis of poly(ADP-ribose) attracting repair factors. We show here that biogenic cations such as Mg2+, Ca2+, Mn2+, spermidine3+, or spermine4+ can induce liquid-like assembly of poly(ADP-ribosyl)ated [PARylated] PARP1 into multimolecular associates (hereafter: self-assembly). The self-assembly of PARylated PARP1 affects the level of its automodification and hydrolysis of poly(ADP-ribose) by poly(ADP-ribose) glycohydrolase (PARG). Furthermore, association of PARylated PARP1 with repair proteins strongly stimulates strand displacement DNA synthesis by DNA polymerase ß (Pol ß) but has no noticeable effect on DNA ligase III activity. Thus, liquid-like self-assembly of PARylated PARP1 may play a critical part in the regulation of i) its own activity, ii) PARG-dependent hydrolysis of poly(ADP-ribose), and iii) Pol ß-mediated DNA synthesis. The latter can be considered an additional factor influencing the choice between long-patch and short-patch DNA synthesis during repair.


Asunto(s)
Poli(ADP-Ribosa) Polimerasa-1 , Poli ADP Ribosilación , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Humanos , Poli Adenosina Difosfato Ribosa/metabolismo , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/genética , Cationes Bivalentes/metabolismo , Reparación del ADN , ADN Polimerasa beta/metabolismo , Cationes/metabolismo , Daño del ADN
2.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39000034

RESUMEN

Non-membrane compartments or biomolecular condensates play an important role in the regulation of cellular processes including DNA repair. Here, an ability of XRCC1, a scaffold protein involved in DNA base excision repair (BER) and single-strand break repair, to form protein-rich microphases in the presence of DNA duplexes was discovered. We also showed that the gap-filling activity of BER-related DNA polymerase λ (Pol λ) is significantly increased by the presence of XRCC1. The stimulation of the Pol λ activity was observed only at micromolar XRCC1 concentrations, which were well above the nanomolar dissociation constant determined for the XRCC1-Pol λ complex and pointed to the presence of an auxiliary stimulatory factor in addition to protein-protein interactions. Indeed, according to dynamic light scattering measurements, the stimulation of the Pol λ activity by XRCC1 was coupled with microphase separation in a protein-DNA mixture. Fluorescence microscopy revealed colocalization of Pol λ, XRCC1, and gapped DNA within the microphases. Thus, stimulation of Pol λ activity is caused both by its interaction with XRCC1 and by specific conditions of microphase separation; this phenomenon is shown for the first time.


Asunto(s)
ADN Polimerasa beta , Reparación del ADN , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/genética , ADN Polimerasa beta/metabolismo , Humanos , ADN/metabolismo , Unión Proteica
3.
Cell Rep ; 42(10): 113199, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37804508

RESUMEN

PARP-1 activation at DNA damage sites leads to the synthesis of long poly(ADP-ribose) (PAR) chains, which serve as a signal for DNA repair. Here we show that FUS, an RNA-binding protein, is specifically directed to PAR through its RNA recognition motif (RRM) to increase PAR synthesis by PARP-1 in HeLa cells after genotoxic stress. Using a structural approach, we also identify specific residues located in the FUS RRM, which can be PARylated by PARP-1 to control the level of PAR synthesis. Based on the results of this work, we propose a model in which, following a transcriptional arrest that releases FUS from nascent mRNA, FUS can be recruited by PARP-1 activated by DNA damage to stimulate PAR synthesis. We anticipate that this model offers new perspectives to understand the role of FET proteins in cancers and in certain neurodegenerative diseases such as amyotrophic lateral sclerosis.


Asunto(s)
Daño del ADN , Poli Adenosina Difosfato Ribosa , Poli(ADP-Ribosa) Polimerasas , Proteína FUS de Unión a ARN , Humanos , Reparación del ADN , Células HeLa , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Motivo de Reconocimiento de ARN , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo
4.
Sci Rep ; 13(1): 7772, 2023 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-37179431

RESUMEN

FUS is an RNA-binding protein involved in familiar forms of ALS and FTLD that also assembles into fibrillar cytoplasmic aggregates in some neurodegenerative diseases without genetic causes. The self-adhesive prion-like domain in FUS generates reversible condensates via the liquid-liquid phase separation process (LLPS) whose maturation can lead to the formation of insoluble fibrillar aggregates in vitro, consistent with the appearance of cytoplasmic inclusions in ageing neurons. Using a single-molecule imaging approach, we reveal that FUS can assemble into nanofibrils at concentrations in the nanomolar range. These results suggest that the formation of fibrillar aggregates of FUS could occur in the cytoplasm at low concentrations of FUS, below the critical ones required to trigger the liquid-like condensate formation. Such nanofibrils may serve as seeds for the formation of pathological inclusions. Interestingly, the fibrillation of FUS at low concentrations is inhibited by its binding to mRNA or after the phosphorylation of its prion-like domain, in agreement with previous models.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Priones , Humanos , ARN Mensajero/metabolismo , Priones/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Citoplasma/metabolismo , Fosforilación , Proteína FUS de Unión a ARN/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo
5.
Cells ; 11(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36497190

RESUMEN

DNA damage causes PARP1 activation in the nucleus to set up the machinery responsible for the DNA damage response. Here, we report that, in contrast to cytoplasmic PARPs, the synthesis of poly(ADP-ribose) by PARP1 opposes the formation of cytoplasmic mRNA-rich granules after arsenite exposure by reducing polysome dissociation. However, when mRNA-rich granules are pre-formed, whether in the cytoplasm or nucleus, PARP1 activation positively regulates their assembly, though without additional recruitment of poly(ADP-ribose) in stress granules. In addition, PARP1 promotes the formation of TDP-43- and FUS-rich granules in the cytoplasm, two RNA-binding proteins which form neuronal cytoplasmic inclusions observed in certain neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Together, the results therefore reveal a dual role of PARP1 activation which, on the one hand, prevents the early stage of stress granule assembly and, on the other hand, enables the persistence of cytoplasmic mRNA-rich granules in cells which may be detrimental in aging neurons.


Asunto(s)
Proteína FUS de Unión a ARN , Gránulos de Estrés , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , Estrés Oxidativo , Daño del ADN , ARN Mensajero/genética , ARN Mensajero/metabolismo
6.
Int J Mol Sci ; 23(21)2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36361989

RESUMEN

Fused in sarcoma (FUS) is involved in the regulation of RNA and DNA metabolism. FUS participates in the formation of biomolecular condensates driven by phase transition. FUS is prone to self-aggregation and tends to undergo phase transition both with or without nucleic acid polymers. Using dynamic light scattering and fluorescence microscopy, we examined the formation of FUS high-order structures or FUS-rich microphases induced by the presence of RNA, poly(ADP-ribose), ssDNA, or dsDNA and evaluated effects of some nucleic-acid-binding proteins on the phase behavior of FUS-nucleic acid systems. Formation and stability of FUS-rich microphases only partially correlated with FUS's affinity for a nucleic acid polymer. Some proteins-which directly interact with PAR, RNA, ssDNA, and dsDNA and are possible components of FUS-enriched cellular condensates-disrupted the nucleic-acid-induced assembly of FUS-rich microphases. We found that XRCC1, a DNA repair factor, underwent a microphase separation and formed own microdroplets and coassemblies with FUS in the presence of poly(ADP-ribose). These results probably indicated an important role of nucleic-acid-binding proteins in the regulation of FUS-dependent formation of condensates and imply the possibility of the formation of XRCC1-dependent phase-separated condensates in the cell.


Asunto(s)
Ácidos Nucleicos , Proteína FUS de Unión a ARN , Proteína FUS de Unión a ARN/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , Polímeros/metabolismo , Reparación del ADN , ARN
7.
Biochemistry (Mosc) ; 87(Suppl 1): S32-S0, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35501985

RESUMEN

Poly(ADP-ribosyl)ation is a post-translational modification of proteins that performs an essential regulatory function in the cellular response to DNA damage. The key enzyme synthesizing poly(ADP-ribose) (PAR) in the cells is poly(ADP-ribose) polymerase 1 (PARP1). Understanding the mechanisms of the PARP1 activity regulation within the cells is necessary for development of the PARP1-targeted antitumor therapy. This review is devoted to the studies of the role of the RNA-binding protein YB-1 in the PARP1-catalyzed PARylation. The mechanisms of PARP1 activity stimulation by YB-1 protein can possibly be extended to other RNA-binding proteins involved in the maintenance of the genome stability.


Asunto(s)
Poli ADP Ribosilación , Poli(ADP-Ribosa) Polimerasas , Catálisis , Daño del ADN , Poli Adenosina Difosfato Ribosa , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas/metabolismo
8.
Int J Mol Sci ; 21(19)2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32987654

RESUMEN

The fused in sarcoma (FUS) protein combines prion-like properties with a multifunctional DNA/RNA-binding domain and has functions spanning the regulation of RNA metabolism, including transcription, pre-mRNA splicing, mRNA transport and translation. In addition to its roles in RNA metabolism, FUS is implicated in the maintenance of DNA integrity. In this review, we examine the participation of FUS in major DNA repair pathways, focusing on DNA repair associated with poly(ADP-ribosyl)ation events and on how the interaction of FUS with poly(ADP-ribose) may orchestrate transient compartmentalisation of DNA strand breaks. Unravelling how prion-like RNA-binding proteins control DNA repair pathways will deepen our understanding of the pathogenesis of some neurological diseases and cancer as well as provide the basis for the development of relevant innovative therapeutic technologies. This knowledge may also extend the range of applications of poly(ADP-ribose) polymerase inhibitors to the treatment of neurodegenerative diseases related to RNA-binding proteins in the cell, e.g., amyotrophic lateral sclerosis and frontotemporal lobar degeneration.


Asunto(s)
Reparación del ADN , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Proteína FUS de Unión a ARN/fisiología , Animales , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología
9.
J Mol Biol ; 431(15): 2655-2673, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31129062

RESUMEN

Nuclear poly(ADP-ribose) polymerases 1 and 2 (PARP1 and PARP2) catalyze the synthesis of poly(ADP-ribose) (PAR) and use NAD+ as a substrate for the polymer synthesis. Both PARP1 and PARP2 are involved in DNA damage response pathways and function as sensors of DNA breaks, including temporary single-strand breaks formed during DNA repair. Consistently, with a role in DNA repair, PARP activation requires its binding to a damaged DNA site, which initiates PAR synthesis. Here we use atomic force microscopy to characterize at the single-molecule level the interaction of PARP1 and PARP2 with long DNA substrates containing a single damage site and representing intermediates of the short-patch base excision repair (BER) pathway. We demonstrated that PARP1 has higher affinity for early intermediates of BER than PARP2, whereas both PARPs efficiently interact with the nick and may contribute to regulation of the final ligation step. The binding of a DNA repair intermediate by PARPs involved a PARP monomer or dimer depending on the type of DNA damage. PARP dimerization influences the affinity of these proteins to DNA and affects their enzymatic activity: the dimeric form is more effective in PAR synthesis in the case of PARP2 but is less effective in the case of PARP1. PARP2 suppresses PAR synthesis catalyzed by PARP1 after single-strand breaks formation. Our study suggests that the functions of PARP1 and PARP2 overlap in BER after a site cleavage and provides evidence for a role of PARP2 in the regulation of PARP1 activity.


Asunto(s)
Reparación del ADN , ADN/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , ADN/química , Humanos , Microscopía de Fuerza Atómica/métodos , Conformación de Ácido Nucleico , Unión Proteica , Multimerización de Proteína , Especificidad por Sustrato
10.
Cell Rep ; 27(6): 1809-1821.e5, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31067465

RESUMEN

PARP-1 synthesizes long poly(ADP-ribose) chains (PAR) at DNA damage sites to recruit DNA repair factors. Among proteins relocated on damaged DNA, the RNA-binding protein FUS is one of the most abundant, raising the issue about its involvement in DNA repair. Here, we reconstituted the PARP-1/PAR/DNA system in vitro and analyzed at the single-molecule level the role of FUS. We demonstrate successively the dissociation of FUS from mRNA, its recruitment at DNA damage sites through its binding to PAR, and the assembly of damaged DNA-rich compartments. PARG, an enzyme family that hydrolyzes PAR, is sufficient to dissociate damaged DNA-rich compartments in vitro and initiates the nucleocytoplasmic shuttling of FUS in cells. We anticipate that, consistent with previous models, FUS facilitates DNA repair through the transient compartmentalization of DNA damage sites. The nucleocytoplasmic shuttling of FUS after the PARG-mediated compartment dissociation may participate in the formation of cytoplasmic FUS aggregates.


Asunto(s)
Daño del ADN , Glicósido Hidrolasas/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Compartimento Celular , Activación Enzimática , Femenino , Células HeLa , Humanos , Peróxido de Hidrógeno/toxicidad , Modelos Biológicos , Fosforilación , Poli Adenosina Difosfato Ribosa/metabolismo , Dominios Proteicos , Proteína FUS de Unión a ARN/química
11.
Int J Mol Sci ; 21(1)2019 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-31892271

RESUMEN

We report on the design, synthesis and molecular modeling study of conjugates of adenosine diphosphate (ADP) and morpholino nucleosides as potential selective inhibitors of poly(ADP-ribose)polymerases-1, 2 and 3. Sixteen dinucleoside pyrophosphates containing natural heterocyclic bases as well as 5-haloganeted pyrimidines, and mimicking a main substrate of these enzymes, nicotinamide adenine dinucleotide (NAD+)-molecule, have been synthesized in a high yield. Morpholino nucleosides have been tethered to the ß-phosphate of ADP via a phosphoester or phosphoramide bond. Screening of the inhibiting properties of these derivatives on the autopoly(ADP-ribosyl)ation of PARP-1 and PARP-2 has shown that the effect depends upon the type of nucleobase as well as on the linkage between ADP and morpholino nucleoside. The 5-iodination of uracil and the introduction of the P-N bond in NAD+-mimetics have shown to increase inhibition properties. Structural modeling suggested that the P-N bond can stabilize the pyrophosphate group in active conformation due to the formation of an intramolecular hydrogen bond. The most active NAD+ analog against PARP-1 contained 5-iodouracil 2'-aminomethylmorpholino nucleoside with IC50 126 ± 6 µM, while in the case of PARP-2 it was adenine 2'-aminomethylmorpholino nucleoside (IC50 63 ± 10 µM). In silico analysis revealed that thymine and uracil-based NAD+ analogs were recognized as the NAD+-analog that targets the nicotinamide binding site. On the contrary, the adenine 2'-aminomethylmorpholino nucleoside-based NAD+ analogs were predicted to identify as PAR-analogs that target the acceptor binding site of PARP-2, representing a novel molecular mechanism for selective PARP inhibition. This discovery opens a new avenue for the rational design of PARP-1/2 specific inhibitors.


Asunto(s)
Adenosina Difosfato/química , Morfolinos/química , Nucleósidos/química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Sitios de Unión/efectos de los fármacos , Humanos , NAD/química , Niacinamida/química
12.
DNA Repair (Amst) ; 72: 28-38, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30291044

RESUMEN

Replication protein A contributes to all major pathways of DNA metabolism and is a target for post-translation modifications, including poly(ADP-ribosyl)ation catalyzed by PARP1. Here we demonstrate that the efficiency of RPA poly(ADP-ribosyl)ation strongly depends on the structure of DNA used for PARP1 activation and on the polarity of RPA binding. Moreover, RPA influences PARP1 activity, and this effect also depends on DNA structure: RPA inhibits PAR synthesis catalyzed by PARP1 in the presence of ssDNA and stimulates it in the presence of a DNA duplex, in particular that containing a nick or a gap. Using fluorescently labeled proteins, we showed their direct interaction and characterized it quantitatively. RPA can accelerate the replacement of poly(ADP-ribosyl)ated PARP1 molecules bound to DNA by the unmodified ones. Thus, our data allow us to suggest that the balance between the affinities of PARP1 and RPA for DNA and the interaction of these proteins with each other are the cornerstone of the modulating effect of RPA on PARP1 activity. This effect might contribute to the regulation of PARP1 activity in various DNA processing mechanisms including DNA replication and repair pathways, where both PARP1 and RPA participate.


Asunto(s)
Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Proteína de Replicación A/metabolismo , Biocatálisis , ADN/metabolismo , Humanos , Poli Adenosina Difosfato Ribosa/metabolismo , Procesamiento Proteico-Postraduccional
13.
BMC Genomics ; 18(1): 492, 2017 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-28659185

RESUMEN

BACKGROUND: In the course of replication of eukaryotic chromosomes, the telomere length is maintained due to activity of telomerase, the ribonucleoprotein reverse transcriptase. Abolishing telomerase function causes progressive shortening of telomeres and, ultimately, cell cycle arrest and replicative senescence. To better understand the cellular response to telomerase deficiency, we performed a transcriptomic study for the thermotolerant methylotrophic yeast Hansenula polymorpha DL-1 lacking telomerase activity. RESULTS: Mutant strain of H. polymorpha carrying a disrupted telomerase RNA gene was produced, grown to senescence and analyzed by RNA-seq along with wild type strain. Telomere shortening induced a transcriptional response involving genes relevant to telomere structure and maintenance, DNA damage response, information processing, and some metabolic pathways. Genes involved in DNA replication and repair, response to environmental stresses and intracellular traffic were up-regulated in senescent H. polymorpha cells, while strong down-regulation was observed for genes involved in transcription and translation, as well as core histones. CONCLUSIONS: Comparison of the telomerase deletion transcription responses by Saccharomyces cerevisiae and H. polymorpha demonstrates that senescence makes different impact on the main metabolic pathways of these yeast species but induces similar changes in processes related to nucleic acids metabolism and protein synthesis. Up-regulation of a subunit of the TORC1 complex is clearly relevant for both types of yeast.


Asunto(s)
Genómica , Pichia/enzimología , Pichia/genética , Telomerasa/deficiencia , Termotolerancia , Transcripción Genética , Autofagia/genética , Metabolismo de los Hidratos de Carbono/genética , Daño del ADN/genética , Metabolismo Energético/genética , Ambiente , Genes Fúngicos/genética , Espacio Intracelular/metabolismo , Pichia/citología , Pichia/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estrés Fisiológico/genética , Acortamiento del Telómero/genética
14.
Mol Divers ; 21(1): 101-113, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27677737

RESUMEN

A versatile strategy for the synthesis of [Formula: see text] mimetics was developed, involving an efficient pyrophosphate linkage formation in key conjugates containing a functional amino group which acts as useful reactive anchor for further derivatization. These [Formula: see text] mimetics consist of ADP conjugated through a diphosphate chain to an extended aliphatic linker bearing an aromatic acid residue. A number of conjugates containing aromatic carboxylic acids were found to inhibit poly(ADP-ribose) synthesis catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1). A new class of potential PARP-1 inhibitors mimicking [Formula: see text], a substrate in the PARP-1 catalyzed reaction, was proposed.


Asunto(s)
Adenosina Difosfato/química , Materiales Biomiméticos/síntesis química , Materiales Biomiméticos/farmacología , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Materiales Biomiméticos/química , Técnicas de Química Sintética , Inhibidores Enzimáticos/química , NAD/química
15.
Biochim Biophys Acta ; 1864(12): 1631-1640, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27544639

RESUMEN

Base excision repair (BER) is a flagship DNA repair system responsible for maintaining genome integrity. Apart from basal enzymes, this system involves several accessory factors essential for coordination and regulation of DNA processing during substrate channeling. Y-box-binding protein 1 (YB-1), a multifunctional factor that can interact with DNA, RNA, poly(ADP-ribose) and plenty of proteins including DNA repair enzymes, is increasingly considered as a non-canonical protein of BER. Here we provide quantitative characterization of YB-1 physical interactions with key BER factors such as PARP1, PARP2, APE1, NEIL1 and pol ß and comparison of the full-length YB-1 and its C-terminally truncated nuclear form in regard to their binding affinities for BER proteins. Data on functional interactions reveal strong stimulation of PARP1 autopoly(ADP-ribosyl)ation and inhibition of poly(ADP-ribose) degradation by PARG in the presence of YB-1. Moreover, YB-1 is shown to stimulate AP lyase activity of NEIL1 and to inhibit dRP lyase activity of pol ß on model DNA duplex structure. We also demonstrate for the first time YB-1 poly(ADP-ribosyl)ation in the presence of RNA.


Asunto(s)
Reparación del ADN/fisiología , Proteína 1 de Unión a la Caja Y/metabolismo , Animales , Daño del ADN , ADN Glicosilasas/metabolismo , ADN Polimerasa beta/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Humanos , Ratones , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometría de Fluorescencia , Proteína 1 de Unión a la Caja Y/química , Proteína 1 de Unión a la Caja Y/genética
16.
Nucleic Acids Res ; 44(19): 9279-9295, 2016 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-27471034

RESUMEN

Poly(ADP-ribose) polymerases (PARPs/ARTDs) use nicotinamide adenine dinucleotide (NAD+) to catalyse the synthesis of a long branched poly(ADP-ribose) polymer (PAR) attached to the acceptor amino acid residues of nuclear proteins. PARPs act on single- and double-stranded DNA breaks by recruiting DNA repair factors. Here, in in vitro biochemical experiments, we found that the mammalian PARP1 and PARP2 proteins can directly ADP-ribosylate the termini of DNA oligonucleotides. PARP1 preferentially catalysed covalent attachment of ADP-ribose units to the ends of recessed DNA duplexes containing 3'-cordycepin, 5'- and 3'-phosphate and also to 5'-phosphate of a single-stranded oligonucleotide. PARP2 preferentially ADP-ribosylated the nicked/gapped DNA duplexes containing 5'-phosphate at the double-stranded termini. PAR glycohydrolase (PARG) restored native DNA structure by hydrolysing PAR-DNA adducts generated by PARP1 and PARP2. Biochemical and mass spectrometry analyses of the adducts suggested that PARPs utilise DNA termini as an alternative to 2'-hydroxyl of ADP-ribose and protein acceptor residues to catalyse PAR chain initiation either via the 2',1″-O-glycosidic ribose-ribose bond or via phosphodiester bond formation between C1' of ADP-ribose and the phosphate of a terminal deoxyribonucleotide. This new type of post-replicative modification of DNA provides novel insights into the molecular mechanisms underlying biological phenomena of ADP-ribosylation mediated by PARPs.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN/genética , ADN/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Animales , Catálisis , Aductos de ADN , Humanos , Hidrólisis , Ratones , NAD/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Unión Proteica , Especificidad por Sustrato
17.
Nucleic Acids Res ; 44(6): e60, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26673720

RESUMEN

PARP1 and PARP2 are implicated in the synthesis of poly(ADP-ribose) (PAR) after detection of DNA damage. The specificity of PARP1 and PARP2 interaction with long DNA fragments containing single- and/or double-strand breaks (SSBs and DSBs) have been studied using atomic force microscopy (AFM) imaging in combination with biochemical approaches. Our data show that PARP1 localizes mainly on DNA breaks and exhibits a slight preference for nicks over DSBs, although the protein has a moderately high affinity for undamaged DNA. In contrast to PARP1, PARP2 is mainly detected at a single DNA nick site, exhibiting a low level of binding to undamaged DNA and DSBs. The enhancement of binding affinity of PARP2 for DNA containing a single nick was also observed using fluorescence titration. AFM studies reveal that activation of both PARPs leads to the synthesis of highly branched PAR whose size depends strongly on the presence of SSBs and DSBs for PARP1 and of SSBs for PARP2. The initial affinity between the PARP1, PARP2 and the DNA damaged site appears to influence both the size of the PAR synthesized and the time of residence of PARylated PARP1 and PARP2 on DNA damages.


Asunto(s)
Roturas del ADN de Doble Cadena , Roturas del ADN de Cadena Simple , Reparación del ADN , ADN/química , Poli Adenosina Difosfato Ribosa/biosíntesis , Poli(ADP-Ribosa) Polimerasas/química , Clonación Molecular , ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Magnesio/química , Microscopía de Fuerza Atómica , Imagen Molecular , Plásmidos/química , Plásmidos/metabolismo , Poli(ADP-Ribosa) Polimerasa-1 , Poli Adenosina Difosfato Ribosa/genética , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Putrescina/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espermidina/química
18.
Biochimie ; 119: 36-44, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26453809

RESUMEN

Multifunctional Y-box binding protein 1 (YB-1) is actively studied as one of the components of cellular response to genotoxic stress. However, the precise role of YB-1 in the process of DNA repair is still obscure. In the present work we report for the first time new posttranslational modification of YB-1 - poly(ADP-ribosyl)ation, catalyzed by one of the main regulatory enzymes of DNA repair - poly(ADP-ribose)polymerase 1 (PARP1) in the presence of model DNA substrate carrying multiple DNA lesions. Therefore, poly(ADP-ribosyl)ation of YB-1 catalyzed with PARP1, can be stimulated by damaged DNA. The observed property of YB-1 underlines its ability to participate in the DNA repair by its involvement in the regulatory cascades of DNA repair.


Asunto(s)
Daño del ADN , Reparación del ADN , Modelos Biológicos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Procesamiento Proteico-Postraduccional , Regulación hacia Arriba , Proteína 1 de Unión a la Caja Y/metabolismo , ADN/metabolismo , Roturas del ADN de Doble Cadena , Ensayo de Cambio de Movilidad Electroforética , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Mutación , NAD/metabolismo , Estrés Oxidativo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli Adenosina Difosfato Ribosa/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína 1 de Unión a la Caja Y/química , Proteína 1 de Unión a la Caja Y/genética
19.
J Biol Chem ; 290(36): 21811-20, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26170451

RESUMEN

Poly(ADP-ribosyl)ation is a reversible post-translational modification that plays an essential role in many cellular processes, including regulation of DNA repair. Cellular DNA damage response by the synthesis of poly(ADP-ribose) (PAR) is mediated mainly by poly(ADP-ribose) polymerase 1 (PARP1). The XPC-RAD23B complex is one of the key factors of nucleotide excision repair participating in the primary DNA damage recognition. By using several biochemical approaches, we have analyzed the influence of PARP1 and PAR synthesis on the interaction of XPC-RAD23B with damaged DNA. Free PAR binds to XPC-RAD23B with an affinity that depends on the length of the poly(ADP-ribose) strand and competes with DNA for protein binding. Using (32)P-labeled NAD(+) and immunoblotting, we also demonstrate that both subunits of the XPC-RAD23B are poly(ADP-ribosyl)ated by PARP1. The efficiency of XPC-RAD23B PARylation depends on DNA structure and increases after UV irradiation of DNA. Therefore, our study clearly shows that XPC-RAD23B is a target of poly(ADP-ribosyl)ation catalyzed by PARP1, which can be regarded as a universal regulator of DNA repair processes.


Asunto(s)
Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Animales , Secuencia de Bases , Unión Competitiva , Línea Celular , ADN/genética , Reparación del ADN , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Humanos , Immunoblotting , Cinética , Poli(ADP-Ribosa) Polimerasa-1 , Poli Adenosina Difosfato Ribosa/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Unión Proteica
20.
Biochimie ; 112: 10-9, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25724268

RESUMEN

In eukaryotes the stability of genome is provided by functioning of DNA repair systems. One of the main DNA repair pathways in eukaryotes is the base excision repair (BER). This system requires precise regulation for correct functioning. Two members of the PARP family - PARP-1 and PARP-2, which can be activated by DNA damage - are widely considered as regulators of DNA repair processes, including BER. In contrast to PARP-1, the role of PARP-2 in BER has not been extensively studied yet. Since AP site is one of the most frequent type of DNA damage and a key intermediate of BER at the stage preceding formation of DNA breaks, in this paper we focused on the characterization of PARP-2 interaction with AP site-containing DNAs. We demonstrated that PARP-2, like PARP-1, can interact with the intact AP site via Schiff base formation, in spite of crucial difference in the structure of the DNA binding domains of these PARPs. By cross-linking of PARPs to AP DNA, we determined that the N-terminal domains of both PARPs are involved in formation of cross-links with AP DNA. We have also confirmed that DNA binding by PARP-2, in contrast to PARP-1, is not modulated by autoPARylation. PARP-2, like PARP-1, can inhibit the activity of APE1 by binding to AP site, but, in contrast to PARP-1, this inhibitory influence is hardly regulated by PAR synthesis. At the same time, 5'-dRP lyase activity of both PARPs is comparable, although being much weaker than that of Pol ß, which is considered as the main 5'-dRP lyase of the BER process.


Asunto(s)
ADN/química , Poli(ADP-Ribosa) Polimerasas/química , Elementos de Respuesta , ADN/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Humanos , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/metabolismo , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA