Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Discov Nano ; 19(1): 32, 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38386194

Activated carbon (AC) is the most common and economically viable adsorbent for eliminating toxic organic pollutants, particularly dyes, from wastewater. Its widespread adoption is due to the simplicity and affordable production of AC, wherein low-cost agricultural wastes, such as durian skin can be used. Converting durian skin into AC presents a promising solution for its solid waste management. However, inherent drawbacks such as its non-selectivity, relatively short lifespan and laborious replacement and recovery processes diminish the overall efficacy of AC as an adsorbent. To address these challenges, the immobilisation of metal nanocatalysts such as silver nanoparticles (AgNPs) is one of the emerging solutions. AgNPs can facilitate the regeneration of the adsorption sites of AC by catalysing the conversion of the adsorbed dyes into harmless and simpler molecules. Nevertheless, the immobilisation of AgNPs on AC surface can be challenging as the pore size formation of AC is hard to control and the nanomaterials can easily leach out from the AC surface. Hence, in this study, we synthesised AC from durian skin (DS) and immobilised AgNPs on the AC-DS surface. Then, we used methylene blue (MB) removal for studying the adsorption capability and recyclability of the AC-DS. In the synthesis of AC-DS, the influences of reaction temperature, activating agent, and acid-washing to its capability in adsorptive removal of  MB in solution were first determined. It was found that 400 °C, KOH activating agent, and the presence of acid-washing (50% of HNO3) resulted in AC-DS with the highest percentage of MB removal (91.49 ± 2.86%). Then, the overall results from three recyclability experiments demonstrate that AC-DS with immobilised AgNPs exhibited higher MB removal after several cycles (up to 6 cycles) as compared to AC-DS alone, proving the benefit of AgNPs for the recyclability of AC-DS. We also found that AgNPs/Citrate@AC-DS exhibited better adsorption capability and recyclability as compared to AgNPs/PVP@AC-DS indicating significant influences of type of stabilisers in this study. This study also demonstrates that the presence of more oxygen-containing functional groups (i.e., carboxyl and hydroxyl functional groups) after acid-washing on AC-DS and in citrate molecules, has greater influence to the performance of AC-DS and AgNPs/Citrate@AC-DS in the removal of MB as compared to the influences of their BET surface area and pore structure. The findings in this study have the potential to promote and serve as a guideline for harnessing the advantages of nanomaterials, such as AgNPs, to enhance the properties of AC for environmental applications.

2.
Sci Rep ; 12(1): 4433, 2022 03 15.
Article En | MEDLINE | ID: mdl-35292654

White matter lesions (WML) underlie multiple brain disorders, and automatic WML segmentation is crucial to evaluate the natural disease course and effectiveness of clinical interventions, including drug discovery. Although recent research has achieved tremendous progress in WML segmentation, accurate detection of subtle WML present early in the disease course remains particularly challenging. Here we propose an approach to automatic WML segmentation of mild WML loads using an intensity standardisation technique, gray level co-occurrence matrix (GLCM) embedded clustering technique, and random forest (RF) classifier to extract texture features and identify morphology specific to true WML. We precisely define their boundaries through a local outlier factor (LOF) algorithm that identifies edge pixels by local density deviation relative to its neighbors. The automated approach was validated on 32 human subjects, demonstrating strong agreement and correlation (excluding one outlier) with manual delineation by a neuroradiologist through Intra-Class Correlation (ICC = 0.881, 95% CI 0.769, 0.941) and Pearson correlation (r = 0.895, p-value < 0.001), respectively, and outperforming three leading algorithms (Trimmed Mean Outlier Detection, Lesion Prediction Algorithm, and SALEM-LS) in five of the six established key metrics defined in the MICCAI Grand Challenge. By facilitating more accurate segmentation of subtle WML, this approach may enable earlier diagnosis and intervention.


White Matter , Algorithms , Brain/diagnostic imaging , Brain/pathology , Cluster Analysis , Humans , Magnetic Resonance Imaging/methods , White Matter/diagnostic imaging , White Matter/pathology
3.
Waste Manag ; 78: 929-937, 2018 Aug.
Article En | MEDLINE | ID: mdl-32559988

In this study, solid coconut waste and CaO/PVA was used as raw material and catalyst respectively to produce biodiesel through in situ transesterification. Both, raw material and catalyst were packed in a packed bed reactor. The reaction was fixed for 3 h and the mixing was kept constant at 350 rpm. The highest biodiesel yield of 95% was obtained at reaction temperature of 61 °C with catalyst loading (CaO/PVA) of 2.29 wt% and methanol to solid ratio of 12:1. CaO-waste derived catalyst has been successfully proven to be utilized as heterogeneous base catalyst for the production of biodiesel from solid coconut waste.

4.
Polymers (Basel) ; 11(1)2018 Dec 20.
Article En | MEDLINE | ID: mdl-30959988

This study was conducted to improve the life-span of the biofilm produced from algae by evaluating the decomposition rate with the effect of cinnamon extraction oil (CEO). The biofilm was fabricated using the solution casting technique. The soil burying analysis demonstrated low moisture absorption of the biofilm, thus decelerating the degradation due to low swelling rate and micro-organism activity, prolonging the shelf-life of the biofilm. Hence, the addition of CEO also affects the strength properties of the biofilm. The maximum tensile strength was achieved with the addition of 5% CEO, which indicated a good intermolecular interaction between the biopolymer (algae) and cinnamon molecules. The tensile strength, which was measured at 4.80 MPa, correlated with the morphological structure. The latter was performed using SEM, where the surface showed the absence of a separating phase between the biofilm and cinnamon blend. This was evidenced by FTIR analysis, which confirmed the occurrence of no chemical reaction between the biofilm and CEO during processing. The prolongation shelf-life rate of biofilm with good tensile properties are achievable with the addition of 5% of CEO.

...