Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
2.
Food Res Int ; 195: 114973, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39277239

RESUMEN

Beyond sensory quality, food-evoked emotions play a crucial role in consumers acceptance and willingness to try, which are essential for product development. The link between fermented coffee sensory characteristics and elicited emotional responses from consumers is underexplored. This study aimed to evaluate consumers' acceptability of spontaneously fermented and unfermented roasted coffee through self-reported sensory evaluation and biometrics assessment. Self-reported liking in 15-cm non-structured scale, multiple choice of negative, neutral, and positive emojis, and subconscious emotional responses from 85 regular coffee consumers were analysed. Their relationship with the pattern of volatile aromatic compounds were also investigated. Fermented (F) and unfermented (UF) coffee beans with light- (L), dark- (D), and commercial dark (C) roasting levels were brewed and evaluated along with gas chromatography-mass spectrometry measurement. Multivariate data analysis was conducted to explore the inner relationships among volatile compounds, self-reported liking, and biometrics. Unfermented-dark roasted coffee (UFD) had highest overall consumer liking response ± standard error (8.68 ± 0.40), followed by the fermented-dark roasted (FD) at 7.73 ± 0.43 with no significant differences (p > 0.05). Fermented light-roasted coffee was associated with lower liking scores and negative emotional responses. In contrast, dark roasted coffee, which was linked to positive emojis and emotional responses, exhibited less detected peak area of volatile compounds contributing fruity and vegetative aromas, such as benzaldehyde, furfuryl acetate, 2-acetyl-1-methyl pyrrole, and isovaleric acid, potentially as negative drivers of consumer liking. Findings from this study could guide coffee manufacturers in developing specialty coffee if spontaneous fermentation is offered.


Asunto(s)
Café , Comportamiento del Consumidor , Emociones , Fermentación , Gusto , Compuestos Orgánicos Volátiles , Humanos , Masculino , Femenino , Adulto , Compuestos Orgánicos Volátiles/análisis , Adulto Joven , Café/química , Coffea/química , Odorantes/análisis , Culinaria/métodos , Biometría , Semillas/química , Cromatografía de Gases y Espectrometría de Masas , Persona de Mediana Edad , Preferencias Alimentarias , Manipulación de Alimentos/métodos
3.
Food Sci Nutr ; 12(6): 4408-4420, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38873453

RESUMEN

Diabetes is becoming a significant health concern in Asia, where the prevalence has reached alarming levels. An important contributing factor is the consumption of high-carbohydrate foods, including rice, bread, etc. These high-carbohydrate foods pose a major risk to public health due to their impact on postprandial hyperglycemia. This research aimed to formulate a chickpea pulao (cooked Indian-Pakistani rice dish) and to evaluate its effects on postprandial blood glucose levels in type 2 diabetic individuals. Antioxidant potential and total phenolic contents of herbs at different concentrations (1, 3, 5, 7, and 9%) were measured through DPPH and Folin Ciocalteu assays. The antidiabetic potential was tested by α-amylase and α-glucosidase inhibition assays. After sensory evaluation, the best-chosen concentration was used to formulate the chickpea pulao. The study trial was advertised under "DP trial," and 12 participants were recruited. A single-blind randomized cross-over trial was conducted for 3 weeks with a one-week wash-over time in between. Participants' preprandial and postprandial blood glucose levels were recorded for control and intervention recipes. Results indicated that both fenugreek seeds (FS) and Indian rennet (IR) showed good antioxidant and hypoglycemic activity (p = .000) in raw and boiled extracts. For DPPH, the IC50 values of unboiled and boiled combined (FS + IR) extracts were calculated as 7.4% and 8.02%, respectively. Similarly, for α-amylase, the IC50 values of combined IR and FS unboiled and boiled extracts were 6.58% and 6.83%, and for α-glucosidase inhibition assay, the values were measured as 14.98% and 16.24%. The single-blind randomized cross-over trial showed that consuming the intervention recipe significantly reduced postprandial hyperglycemia (p = .000) in type 2 diabetic participants. The intervention recipe decreased hyperglycemia by approximately 15% daily compared to the control recipe. Incorporation of hypoglycemic herbs into dietary patterns can work as an adjunct therapy for diabetes management, especially in populations with a high prevalence of this disease.

4.
Food Sci Nutr ; 12(6): 3787-3805, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38873476

RESUMEN

This review covers the significance of green banana resistant starch (RS), a substantial polysaccharide. The food industry has taken an interest in green banana flour due to its 30% availability of resistant starch and its approximately 70% starch content on a dry basis, making its use suitable for food formulations where starch serves as the base. A variety of processing techniques, such as heat-moisture, autoclaving, microwaving, high hydrostatic pressure, extrusion, ultrasound, acid hydrolysis, and enzymatic debranching treatments, have made significant advancements in the preparation of resistant starch. These advancements aim to change the structure, techno-functionality, and subsequently the physiological functions of the resistant starch. Green bananas make up the highest RS as compared to other foods and cereals. Many food processing industries and cuisines now have a positive awareness due to the functional characteristics of green bananas, such as their pasting, thermal, gelatinization, foaming, and textural characteristics. It is also found useful for controlling the rates of cancer, obesity, and diabetic disorders. Moreover, the use of GBRS as prebiotics and probiotics might be significantly proved good for gut health. This study aimed at the awareness of the composition, extraction and application of the green banana resistant starch in the future food products.

6.
Int J Biol Macromol ; 272(Pt 1): 132845, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38830495

RESUMEN

Brown seaweed-derived polysaccharides, notably fucoidan and laminarin, are known for their extensive array of bioactivities and physicochemical properties. However, the effects of upper digestive tract modification on the bioactive performance of fucoidan and laminarin fractions (FLFs) sourced from Australian native species are largely unknown. Here, the digestibility and bioaccessibility of FLFs were evaluated by tracking the dynamic changes in reducing sugar content (CR), profiling the free monosaccharide composition using LC-MS, and comparing high-performance gel permeation chromatography profile variation via LC-SEC-RI. The effects of digestive progression on bioactive performance were assessed by comparing the antioxidant and antidiabetic potential of FLFs and FLF digesta. We observed that molecular weight (Mw) decreased during gastric digestion indicating that FLF aggregates were disrupted in the stomach. During intestinal digestion, Mw gradually decreased and CR increased indicating cleavage of glycosidic bonds releasing free sugars. Although the antioxidant and antidiabetic capacities were not eliminated by the digestion progression, the bioactive performance of FLFs under a digestive environment was reduced contrasting with the same concentration level of the undigested FLFs. These data provide comprehensive information on the digestibility and bioaccessibility of FLFs, and shed light on the effects of digestive progression on bioactive expression.


Asunto(s)
Antioxidantes , Polisacáridos , Algas Marinas , Polisacáridos/química , Polisacáridos/farmacología , Algas Marinas/química , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/metabolismo , Tracto Gastrointestinal Superior/metabolismo , Tracto Gastrointestinal Superior/efectos de los fármacos , Peso Molecular , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Digestión/efectos de los fármacos , Sulfatos/química , Glucanos/química , Glucanos/farmacología , Phaeophyceae/química , Humanos
7.
Food Chem ; 455: 139926, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38833868

RESUMEN

Brown seaweed Ecklonia radiata harbors valuable polyphenols, notably phlorotannins, prized for their health benefits. This study optimized phlorotannin extraction via conventional solvent extraction and ultrasound-assisted extraction methods, utilizing variable concentrations of ethanol. Employing fractional factorial designs, key variables were identified. Steepest ascent/descent method and central composite rotatable designs refined optimal conditions, enhancing phlorotannin and polyphenol yields, and antioxidant capacities. Under optimized conditions, phlorotannin contents reached 2.366 ± 0.01 and 2.596 ± 0.04 PGE mg/g, total polyphenol contents peaked at 10.223 ± 0.03 and 10.836 ± 0.02 GAE mg/g. Robust antioxidant activity was observed: DPPH and OH radical scavenging capacities measured 27.891 ± 0.06 and 17.441 ± 0.08 TE mg/g, and 37.498 ± 1.12 and 49.391 ± 0.82 TE mg/g, respectively. Reducing power capacities surged to 9.016 ± 0.02 and 28.110 ± 0.10 TE mg/g. Liquid chromatography-mass spectrometry (LC-MS) and high-performance liquid chromatography (HPLC) analyses revealed enriched antioxidant compounds. Variations in polyphenol profiles were noted, potentially influencing antioxidant capacity nuances. This study illuminated the potential of E. radiata potential as a polyphenol source and offers optimized extraction methods poised to benefit various industries.


Asunto(s)
Antioxidantes , Polifenoles , Algas Marinas , Polifenoles/química , Polifenoles/aislamiento & purificación , Polifenoles/análisis , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Algas Marinas/química , Cromatografía Líquida de Alta Presión , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Fraccionamiento Químico/métodos , Phaeophyceae/química , Zygophyllaceae/química , Espectrometría de Masas
8.
Food Sci Nutr ; 12(4): 2455-2472, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38628172

RESUMEN

Passion fruits, renowned globally for their polyphenolic content and associated health benefits, have enjoyed growing attention from consumers and producers alike. While global cultivar development progresses, Australia has pioneered several native cultivars tailored for its distinct planting conditions. Despite their cultivation, comprehensive studies on the phenolic profiles and antioxidant capacities of these Australian-native passion fruits are notably lacking. This study aims to investigate and compare the polyphenolic content present in the by-products, which are peel (L), and consumable portions, which are the pulp and seeds (P), of four indigenous cultivars: 'Misty Gem' (MG), 'Flamengo' (FG), 'Sweetheart' (SW), and 'Panama' (SH). Employing LC-ESI-QTOF-MS/MS for profiling, a comprehensive list of polyphenols was curated. Additionally, various antioxidant assays-DPPH, FRAP, ABTS, RPA, FICA, and •OH-RSA-were performed to evaluate their antioxidant potential. A total of 61 polyphenols were identified, categorized into phenolic acid (19), flavonoids (33), and other phenolic substances (9). In the antioxidant assays, the SHP sample exhibited the highest •OH--RSA activity at 98.64 ± 1.45 mg AAE/g, while the FGL sample demonstrated prominent DPPH, FRAP, and ABTS activities with values of 32.47 ± 1.92 mg TE/g, 62.50 ± 3.70 mg TE/g, and 57.84 ± 1.22 mg AAE/g, respectively. Additionally, TPC and several antioxidant assays had a significant positive correlation, including DPPH, FRAP, and ABTS. The Australian-native passion fruits revealed distinct polyphenolic profiles and diverse antioxidant capacities, establishing a foundation for deeper health benefit analyses. This study accentuates the significance of understanding region-specific cultivars and their potential nutraceutical applications.

9.
Antioxidants (Basel) ; 13(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38671858

RESUMEN

Seaweed, in particular, brown seaweed, has gained research interest in the past few years due to its distinctive phenolic profile that has a multitude of bioactive properties. In order to obtain the maximum extraction efficiency of brown seaweed phenolic compounds, Response Surface Methodology was utilized to optimize the ultrasound-assisted extraction (UAE) conditions such as the amplitude, time, solvent:solid ratio, and NaOH concentration. Under optimal conditions, UAE had a higher extraction efficiency of free and bound phenolic compounds compared to conventional extraction (stirred 16 h at 4 °C). This led to higher antioxidant activity in the seaweed extract obtained under UAE conditions. The profiling of phenolic compounds using LC-ESI-QTOF-MS/MS identified a total of 25 phenolics with more phenolics extracted from the free phenolic extraction compared to the bound phenolic extracts. Among them, peonidin 3-O-diglucodise-5-O-glucoside and hesperidin 5,7-O-diglucuronide are unique compounds that were identified in P. comosa, E. radiata and D. potatorum, which are not reported in plants. Overall, our findings provided optimal phenolic extraction from brown seaweed for research into employing brown seaweed as a functional food.

10.
Molecules ; 29(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38611814

RESUMEN

Green bananas contain a substantial amount of resistant starch (RS), dietary fiber (DF), and phytochemicals, which exhibit potent antioxidant capabilities, primarily attributable to the abundance of polyphenols. The objective of this study was to assess the variations in the contents and bioaccessibility of RS, DF, and phenolic compounds in three types of Australian green bananas (Cavendish "Musa acuminata", Ladyfinger "Musa paradisiaca L.", and Ducasse "Musa balbisiana"), along with their antioxidant capacities, and the production of short-chain fatty acids (SCFAs) following in vitro simulated gastrointestinal digestion and colonic fermentation. The studied cultivars exhibited significant levels of RS, with Ladyfinger showing the greatest (49%). However, Ducasse bananas had the greatest DF concentration (38.73%). Greater TPC levels for Ladyfinger (2.32 mg GAE/g), as well as TFC and TTC (0.06 mg QE/g and 3.2 mg CE/g, respectively) in Cavendish, together with strong antioxidant capacities (DPPH, 0.89 mg TE/g in Cavendish), have been detected after both intestinal phase and colonic fermentation at 12 and 24 h. The bioaccessibility of most phenolic compounds from bananas was high after gastric and small intestinal digestion. Nevertheless, a significant proportion of kaempferol (31% in Cavendish) remained detectable in the residue after colonic fermentation. The greatest production of SCFAs in all banana cultivars was observed after 24 h of fermentation, except valeric acid, which exhibited the greatest output after 12 h of fermentation. In conclusion, the consumption of whole green bananas may have an advantageous effect on bowel health and offer antioxidant characteristics.


Asunto(s)
Musa , Almidón Resistente , Fibras de la Dieta , Antioxidantes , Fermentación , Australia , Fenoles , Digestión
11.
Heliyon ; 10(6): e28313, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38560674

RESUMEN

The objective of this study was to develop functional date-pits by mold digestion for the potential use in food products. Whole date-pits (WDP) and defatted date-pits (DDP) were digested by mold Trichoderma reesei at 20 °C. T. reesei consumed date-pits as nutrients for their growth, and DDP showed higher growth of molds as compared to the WDP. The mold digested WDP and DDP samples showed an increased water solubility and hygroscopicity as compared to the samples prepared by autoclaved. This indicated that the mold digestion transformed date-pits to hydrophilic characteristics. Thermal analysis indicated a structural change at -3.2 °C for the untreated WDP and it was followed by a glass transition shift (i.e. onset: 138 °C and a specific heat change: 295 J/kg oC), and an endothermic peak at 196 °C with enthalpy of 68 J/g for the solids melting-decomposition. Similar characteristics were also observed for treated samples with the two glass transitions. The total specific heat changes for WDP, autoclaved-WDP, and digested-WDP were observed as 295, 367, and 328 J/kg oC, respectively. The total specific heat changes for DDP, autoclaved-DDP, and digested-DDP were observed as 778, 1329, and 1877 J/kg oC, respectively. This indicated that mold digestion transformed more amorphous fraction in the DDP. The energy absorption intensities of the Fourier Transform Infrared (FTIR) spectra for the selected functional groups decreased by the mold digestion.

13.
Food Res Int ; 181: 114096, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38448106

RESUMEN

In this research, different seeds of Australian-grown date palm (Phoenix dactylifera L.) were studied to evaluate the antioxidant potential and analyze their phenolic constituents. Phenolic compounds were extracted from seeds of various Australian-grown date varieties at different ripening stages. Eight varieties of date seeds (Zahidi, Medjool, Deglet nour, Thoory, Halawi, Barhee, Khadrawy, and Bau Strami) at three ripening stages (Kimri, Khalal, and Tamar) were investigated in this study. Date seeds at Khalal (9.87-16.93 mg GAE/g) and Tamar (9.20-27.87 mg GAE/g) stages showed higher total phenolic content than those at Kimri stage (1.81-5.99 mg GAE/g). For antioxidant assays like DPPH, FRAP, ABTS, RAP, FICA, and TAC, date seeds at Khalal and Tamar stages also showed higher antioxidant potential than Kimri stage. However, date seeds at Kimri stage (55.24-63.26 mg TE/g) expressed higher radical scavenging activity than Khalal (13.58-51.88 mg TE/g) and Tamar (11.06-50.92 mg TE/g) stages. Phenolic compounds were characterized using LC-ESI-QTOF-MS/MS, revealing the presence of 37 different phenolic compounds, including 8 phenolic acids, 18 flavonoids, and 11 other phenolic compounds. Further, phenolic compounds were quantified using LC-DAD, revealing that Zahidi variety of date seeds exhibited the highest content during the Kimri stage. In contrast, during the Khalal and Tamar stages, Deglet nour and Medjool date seeds displayed higher concentrations of phenolic compounds. The results indicated an increase in phenolic content in date seeds after the Kimri stage, with significant variations observed among different date varieties.


Asunto(s)
Antioxidantes , Phoeniceae , Australia , Espectrometría de Masas en Tándem , Fenoles , Semillas
14.
Food Sci Nutr ; 12(2): 661-674, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38370077

RESUMEN

The current study focuses on Punica granatum L. (pomegranate) peel and peel extract and their use as functional foods, food additives, or physiologically active constituents in nutraceutical formulations. The pomegranate peel extract is a good source of bioactive substances needed for the biological activity of the fruit, including phenolic acids, minerals, flavonoids (anthocyanins), and hydrolyzable tannins (gallic acid). The macromolecules found in pomegranate peel and peel extract have been recommended as substitutes for synthetic nutraceuticals, food additives, and chemo-preventive agents because of their well-known ethno-medical significance and chemical properties. Moreover, considering the promises for both their health-promoting activities and chemical properties, the dietary and nutraceutical significance of pomegranate peel and pomegranate peel extract appears to be underestimated. The present review article details their nutritional composition, phytochemical profile, food applications, nutraceutical action, and health benefits.

15.
Sci Rep ; 14(1): 4335, 2024 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-38383637

RESUMEN

Beach-cast seaweed has recently garnered attention for its nutrient-rich composition, including proteins, carbohydrates, vitamins, minerals, and phytochemicals. This study focuses on the phenolic content and antioxidant potential of five Australian beach-cast seaweed species during in vitro digestion and colonic fermentation. The bioaccessibility of the selected phenolic compounds was estimated and short chain fatty acids (SCFAs) production was determined. Cystophora sp., showed a notable increase in phenolic content (23.1 mg GAE/g) and antioxidant capacity (0.42 mg CE/g) during the intestinal and gastric phases of in vitro digestion. Durvillaea sp. demonstrated a significant release of flavonoids (0.35 mg QE/g), while Phyllosphora comosa released high levels of tannins (0.72 mg CE/g) during the intestinal phase. During colonic fermentation, P. comosa released the highest levels of phenolic compounds (4.3 mg GAE/g) after 2 h, followed by an increase in flavonoids (0.15 mg QE/g), tannins (0.07 mg CE/g), and antioxidant activity (DPPH: 0.12 mg CE/g; FRAP: 0.61 mg CE/g) after 4 h. Moreover, P. comosa released a considerable amount of phenolic compounds during both in vitro digestion and colonic fermentation. All species consistently released phenolic compounds throughout the study. Phloroglucinol, gallic acid, and protocatechuic acid were identified as the most bioaccessible phenolic compounds in all five Australian beach-cast seaweeds in the in vitro digestion. Nevertheless, compound levels declined during the colonic fermentation phase due to decomposition and fermentation by gut microbiota. With regard to SCFAs, P. comosa displayed elevated levels of acetic (0.51 mmol/L) and propionic acid (0.36 mmol/L) at 2 h, while Durvillaea sp. showed increased butyric (0.42 mmol/L) and valeric (0.26 mmol/L) production acid after 8 h. These findings suggest that seaweed such as Cystophora sp., Durvillaea sp., and P. comosa are promising candidates for food fortification or nutraceutical applications, given their rich phenolic content and antioxidant properties that potentially offer gut health benefits.


Asunto(s)
Antioxidantes , Algas Marinas , Antioxidantes/metabolismo , Fermentación , Digestión , Taninos/metabolismo , Australia , Fenoles/análisis , Flavonoides , Vitaminas , Ácidos Grasos Volátiles , Algas Marinas/metabolismo
16.
Int J Biol Macromol ; 261(Pt 1): 129820, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38286385

RESUMEN

Marine-based dietary oils (MDOs), which are naturally obtained from different sources, have been scientifically recommended as potent functional bioactives owing to their therapeutic biological activities; however, they have exhibited plenty of health benefits. Though they are very sensitive to light, temperature, moisture, and oxygen, as well as being chemically unstable and merely oxidized, this may limit their utilization in food and pharmaceutical products. Miro- and nanoencapsulation techniques are considered to be the most promising tactics for enhancing the original characteristics, physiochemical properties, and therapeutic effects of entrapped MDOs. This review focuses on the biomacromolecule-stabilized micro/nanocarriers encompassing a wide range of MDOs. The novel-equipped polysaccharides and protein-based micro/nanocarriers cover microemulsions, microcapsules, nanoemulsions, and nanoliposomes, which have been proven to be encouraging candidates for the entrapment of diverse kinds of MDOs. In addition, the current state-of-the-art loading of various MDOs through polysaccharide and protein-based micro/nanocarriers has been comprehensively discussed and tabulated in detail. Biomacromolecule-stabilized nanocarriers, particularly nanoemulsions and nanoliposomes, are addressed as propitious nanocargos for protection of MDOs in response to thought-provoking features as well as delivering the successful, meticulous release to the desired sites. Gastrointestinal fate (GF) of biopolymeric micro/nanocarriers is fundamentally based on their centrifugation, dimension, interfacial, and physical properties. The external surface of epithelial cells in the lumen is the main site where the absorption of lipid-based nanoparticles takes place. MDO-loaded micro- and nanocarriers with biological origins or structural modifications have shown some novel applications that could be used as future therapies for cardiovascular disorders, thanks to today's cutting-edge medical technology. In the future, further investigations are highly needed to open new horizons regarding the application of polysaccharide and protein-based micro/nanocarriers in food and beverage products with the possibility of commercialization in the near future for industrial use.


Asunto(s)
Enfermedades Cardiovasculares , Grasas Insaturadas en la Dieta , Nanopartículas , Humanos , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/prevención & control , Antioxidantes/química , Alimentos , Polisacáridos/química
17.
Food Res Int ; 176: 113800, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38163710

RESUMEN

There is a growing demand for specialty coffee with more pleasant and uniform sensory perception. Wet fermentation could modulate and confer additional aroma notes to final roasted coffee brew. This study aimed to assess differences in volatile compounds and the intensities of sensory descriptors between unfermented and spontaneously fermented coffee using digital technologies. Fermented (F) and unfermented (UF) coffee samples, harvested from two Australia local farms Mountain Top Estate (T) and Kahawa Estate (K), with four roasting levels (green, light-, medium-, and dark-) were analysed using near-infrared spectrometry (NIR), and a low-cost electronic nose (e-nose) along with some ground truth measurements such as headspace/gas chromatography-mass spectrometry (HS-SPME-GC-MS), and quantitative descriptive analysis (QDA ®). Regression machine learning (ML) modelling based on artificial neural networks (ANN) was conducted to predict volatile aromatic compounds and intensity of sensory descriptors using NIR and e-nose data as inputs. Green fermented coffee had significant perception of hay aroma and flavor. Roasted fermented coffee had higher intensities of coffee liquid color, crema height and color, aftertaste, aroma and flavor of dark chocolate and roasted, and butter flavor (p < 0.05). According to GC-MS detection, volatile aromatic compounds, including methylpyrazine, 2-ethyl-5-methylpyrazine, and 2-ethyl-6-methylpyrazine, were observed to discriminate fermented and unfermented roasted coffee. The four ML models developed using the NIR absorbance values and e-nose measurements as inputs were highly accurate in predicting (i) the peak area of volatile aromatic compounds (Model 1, R = 0.98; Model 3, R = 0.87) and (ii) intensities of sensory descriptors (Model 2 and Model 4; R = 0.91), respectively. The proposed efficient, reliable, and affordable method may potentially be used in the coffee industry and smallholders in the differentiation and development of specialty coffee, as well as in process monitoring and sensory quality assurance.


Asunto(s)
Coffea , Café , Café/química , Tecnología Digital , Fermentación , Coffea/química , Odorantes/análisis
18.
Crit Rev Food Sci Nutr ; : 1-24, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37991467

RESUMEN

Seaweed is rich in many unique bioactive compounds such as polyphenols and sulfated polysaccharides that are not found in terrestrial plant. The discovery of numerous biological activities from seaweed has made seaweed an attractive functional food source with the potential to be exploited for human health benefits. During food processing and digestion, cell wall polysaccharide and polyphenols commonly interact, and this may influence the nutritional properties of food. Interactions between cell wall polysaccharide and polyphenols in plant-based system has been extensively studied. However, similar interactions in seaweed have received little attention despite the vast disparity between the structural and chemical composition of plant and seaweed cell wall. This poses a challenge in extracting seaweed bioactive compounds with intact biological properties. This review aims to summarize the cell wall polysaccharide and polyphenols present in brown, red and green seaweed, and current knowledge on their potential interactions. Moreover, this review gives an overview of the gut modulation effect of seaweed polysaccharide and polyphenol.

19.
Chem Biodivers ; 20(11): e202300602, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37798811

RESUMEN

This study compared free and bound phenolic compounds in various marine microalgae species. It assessed total phenolic content (TPC), total flavonoid content (TFC) and total condensed tannin content (TCT) and their antioxidant capacities using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS⋅+ ) radical cation-based assay and ferric ion reducing antioxidant power assay. Liquid chromatography-mass spectrometry (LC-MS) was also employed to characterize the phenolic profiling. Results showed that free phenolic compounds ranged from 1.83-6.45 mg GAE/g d. w., while bound phenolic compounds ranged from 4.03-26.03 mg GAE/g d. w., indicating significant differences. These variations were consistent across assays, highlining unique profiles in different species. A total 10 phenolics were found in these seven microalgae, including 1 phenolic acid, 6 flavonoids, 1 other polyphenol and 2 lignans. 4'-O-methyl-(-)-epigallocatechin 7-O-glucuronide and chrysoeriol 7-O-glucoside in microalgae were firstly reported in microalgal samples. These findings have implications for future applications in industries.


Asunto(s)
Antioxidantes , Microalgas , Antioxidantes/química , Flavonoides/química , Fenoles/química , Extractos Vegetales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA