Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Cell Rep Med ; 4(10): 101212, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37774704

RESUMEN

Pediatric patients with relapsed or refractory rhabdomyosarcoma (RMS) have dismal cure rates, and effective therapy is urgently needed. The oncogenic receptor tyrosine kinase fibroblast growth factor receptor 4 (FGFR4) is highly expressed in RMS and lowly expressed in healthy tissues. Here, we describe a second-generation FGFR4-targeting chimeric antigen receptor (CAR), based on an anti-human FGFR4-specific murine monoclonal antibody 3A11, as an adoptive T cell treatment for RMS. The 3A11 CAR T cells induced robust cytokine production and cytotoxicity against RMS cell lines in vitro. In contrast, a panel of healthy human primary cells failed to activate 3A11 CAR T cells, confirming the selectivity of 3A11 CAR T cells against tumors with high FGFR4 expression. Finally, we demonstrate that 3A11 CAR T cells are persistent in vivo and can effectively eliminate RMS tumors in two metastatic and two orthotopic models. Therefore, our study credentials CAR T cell therapy targeting FGFR4 to treat patients with RMS.


Asunto(s)
Receptores Quiméricos de Antígenos , Rabdomiosarcoma , Animales , Niño , Humanos , Ratones , Línea Celular Tumoral , Inmunoterapia Adoptiva , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptores Quiméricos de Antígenos/genética , Rabdomiosarcoma/tratamiento farmacológico
3.
Mol Cancer Ther ; 21(10): 1608-1621, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-35877472

RESUMEN

Rhabdomyosarcoma (RMS) is the most common soft tissue cancer in children. Treatment outcomes, particularly for relapsed/refractory or metastatic disease, have not improved in decades. The current lack of novel therapies and low tumor mutational burden suggest that chimeric antigen receptor (CAR) T-cell therapy could be a promising approach to treating RMS. Previous work identified FGF receptor 4 (FGFR4, CD334) as being specifically upregulated in RMS, making it a candidate target for CAR T cells. We tested the feasibility of an FGFR4-targeted CAR for treating RMS using an NSG mouse with RH30 orthotopic (intramuscular) tumors. The first barrier we noted was that RMS tumors produce a collagen-rich stroma, replete with immunosuppressive myeloid cells, when T-cell therapy is initiated. This stromal response is not seen in tumor-only xenografts. When scFV-based binders were selected from phage display, CARs targeting FGFR4 were not effective until our screening approach was refined to identify binders to the membrane-proximal domain of FGFR4. Having improved the CAR, we devised a pharmacologic strategy to augment CAR T-cell activity by inhibiting the myeloid component of the T-cell-induced tumor stroma. The combined treatment of mice with anti-myeloid polypharmacy (targeting CSF1R, IDO1, iNOS, TGFbeta, PDL1, MIF, and myeloid misdifferentiation) allowed FGFR4 CAR T cells to successfully clear orthotopic RMS tumors, demonstrating that RMS tumors, even with very low copy-number targets, can be targeted by CAR T cells upon reversal of an immunosuppressive microenvironment.


Asunto(s)
Receptores Quiméricos de Antígenos , Rabdomiosarcoma , Animales , Línea Celular Tumoral , Humanos , Inmunoterapia Adoptiva , Ratones , Polifarmacia , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/genética , Receptores de Antígenos de Linfocitos T , Receptores Quiméricos de Antígenos/genética , Rabdomiosarcoma/tratamiento farmacológico , Factor de Crecimiento Transformador beta , Microambiente Tumoral
4.
Front Immunol ; 12: 706150, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867942

RESUMEN

Robust T cell responses are crucial for effective anti-tumor responses and often dictate patient survival. However, in the context of solid tumors, both endogenous T cell responses and current adoptive T cell therapies are impeded by the immunosuppressive tumor microenvironment (TME). A multitude of inhibitory signals, suppressive immune cells, metabolites, hypoxic conditions and limiting nutrients are believed to render the TME non-conducive to sustaining productive T cell responses. In this study we conducted an in-depth phenotypic and functional comparison of tumor-specific T cells and tumor-nonspecific bystander memory T cells within the same TME. Using two distinct TCR transgenic and solid-tumor models, our data demonstrate that despite exposure to the same cell-extrinsic factors of the TME, the tumor-nonspecific bystander CD8 T cells retain the complete panoply of memory markers, and do not share the same exhaustive phenotype as tumor-reactive T cells. Compared to tumor-specific T cells, bystander memory CD8 T cells in the TME also retain functional effector cytokine production capabilities in response to ex vivo cognate antigenic stimulation. Consistent with these results, bystander memory T cells isolated from tumors showed enhanced recall responses to secondary bacterial challenge in a T cell transplant model. Importantly, the tumor-resident bystander memory cells could also efficiently utilize the available resources within the TME to elaborate in situ recall effector functions following intra-tumoral peptide antigen injection. Additionally, CRISPR-Cas9 gene deletion studies showed that CXCR3 was critical for the trafficking of both tumor antigen-specific and bystander memory T cells to solid tumors. Collectively, these findings that T cells can persist and retain their functionality in distinct solid tumor environments in the absence of cognate antigenic stimulation, support the notion that persistent antigenic signaling is the central driver of T cell exhaustion within the TME. These studies bear implications for programming more efficacious TCR- and CAR-T cells with augmented therapeutic efficacy and longevity through regulation of antigen and chemokine receptors.


Asunto(s)
Células T de Memoria/inmunología , Microambiente Tumoral/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Citocinas/biosíntesis , Inmunofenotipificación , Inmunoterapia Adoptiva , Linfocitos Infiltrantes de Tumor/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Inmunológicos , Neoplasias Experimentales/inmunología , Receptores de Antígenos de Linfocitos T/genética , Receptores CXCR3/inmunología , Receptores Quiméricos de Antígenos/inmunología
5.
Brain ; 143(7): 2255-2271, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32572497

RESUMEN

TMEM106B encodes a lysosomal membrane protein and was initially identified as a risk factor for frontotemporal lobar degeneration. Recently, a dominant D252N mutation in TMEM106B was shown to cause hypomyelinating leukodystrophy. However, how TMEM106B regulates myelination is still unclear. Here we show that TMEM106B is expressed and localized to the lysosome compartment in oligodendrocytes. TMEM106B deficiency in mice results in myelination defects with a significant reduction of protein levels of proteolipid protein (PLP) and myelin oligodendrocyte glycoprotein (MOG), the membrane proteins found in the myelin sheath. The levels of many lysosome proteins are significantly decreased in the TMEM106B-deficient Oli-neu oligodendroglial precursor cell line. TMEM106B physically interacts with the lysosomal protease cathepsin D and is required to maintain proper cathepsin D levels in oligodendrocytes. Furthermore, we found that TMEM106B deficiency results in lysosome clustering in the perinuclear region and a decrease in lysosome exocytosis and cell surface PLP levels. Moreover, we found that the D252N mutation abolished lysosome enlargement and lysosome acidification induced by wild-type TMEM106B overexpression. Instead, it stimulates lysosome clustering near the nucleus as seen in TMEM106B-deficient cells. Our results support that TMEM106B regulates myelination through modulation of lysosome function in oligodendrocytes.


Asunto(s)
Encéfalo/metabolismo , Lisosomas/metabolismo , Proteínas de la Membrana/metabolismo , Vaina de Mielina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Oligodendroglía/metabolismo , Animales , Femenino , Degeneración Lobar Frontotemporal/genética , Humanos , Masculino , Proteínas de la Membrana/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia
6.
Autophagy ; 15(5): 871-885, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30696333

RESUMEN

The intronic hexanucleotide expansion in the C9orf72 gene is one of the leading causes of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS), two devastating neurodegenerative diseases. C9orf72 forms a heterodimer with SMCR8 (Smith-Magenis syndrome chromosome region, candidate 8) protein. However, the physiological function of SMCR8 remains to be characterized. Here we report that ablation of SMCR8 in mice results in splenomegaly with autoimmune phenotypes similar to that of C9orf72 deficiency. Furthermore, SMCR8 loss leads to a drastic decrease of C9orf72 protein levels. Many proteins involved in the macroautophagy-lysosome pathways are downregulated upon SMCR8 loss due to elevated activation of MTORC1 and AKT, which also leads to increased spine density in the Smcr8 knockout neurons. In summary, our studies demonstrate a key role of SMCR8 in regulating MTORC1 and AKT signaling and tissue homeostasis. Abbreviations: ALS: amyotrophic lateral sclerosis; C9orf72: chromosome 9 open reading frame 72; FTLD: frontotemporal lobar degeneration; GEF: guanosine nucleotide exchange factor; GTPase: guanosine tri-phosphatase; KO: knockout; MTOR: mechanistic target of rapamycin kinase; SMCR8: Smith-Magenis chromosome region, candidate 8; WDR41: WD repeat domain 41; WT: wild type.


Asunto(s)
Proteínas Portadoras/fisiología , Homeostasis/genética , Lisosomas/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Biogénesis de Organelos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Animales Recién Nacidos , Autofagia/genética , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Proteínas Portadoras/genética , Células Cultivadas , Regulación hacia Abajo/genética , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Lisosomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Transducción de Señal/genética
7.
Methods Mol Biol ; 1806: 269-288, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29956282

RESUMEN

Accumulating evidence suggests that progranulin is essential for proper lysosomal function. Progranulin is a lysosomal resident protein and sortilin has been demonstrated to be the lysosomal trafficking receptor for progranulin. Here we describe the methods used to study the interaction between progranulin and sortilin, as well as the critical role of sortilin in mediating the lysosomal delivery of progranulin.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Lisosomas/metabolismo , Biología Molecular/métodos , Progranulinas/metabolismo , Fosfatasa Alcalina/metabolismo , Animales , Encéfalo/metabolismo , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Progranulinas/sangre , Unión Proteica , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo
8.
J Neurochem ; 143(2): 236-243, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28640985

RESUMEN

The frontotemporal lobar degeneration (FTLD) protein progranulin (PGRN) is essential for proper lysosomal function. PGRN localizes in the lysosomal compartment within the cell. Prosaposin (PSAP), the precursor of lysosomal saposin activators (saposin A, B, C, D), physically interacts with PGRN. Previously, we have shown that PGRN and PSAP facilitate each other's lysosomal trafficking. Here, we report that the interaction between PSAP and PGRN requires the linker region of saposin B and C (BC linker). PSAP protein with the BC linker mutated, fails to interact with PGRN and deliver PGRN to lysosomes in the biosynthetic and endocytic pathways. On the other hand, PGRN interacts with PSAP through multiple granulin motifs. Granulin D and E bind to PSAP with similar affinity as full-length PGRN. Read the Editorial Comment for this article on page 154.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Saposinas/genética , Saposinas/metabolismo , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Progranulinas , Unión Proteica/fisiología , Ratas
9.
Am J Health Syst Pharm ; 74(8): 568-579, 2017 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-28389456

RESUMEN

PURPOSE: The biosimilar development process, comparability for biological agents, and analytic characterization of biosimilars are described. SUMMARY: Healthcare providers must understand the requirements for biosimilar approval, including the science behind biosimilar development and testing that contributes to the totality of evidence. The foundation of development is to demonstrate that a biosimilar is highly similar to the reference product through analytic characterization. Advances in analytic techniques enable scientists to extensively characterize biological products to identify potential product differences compared with the reference product that may affect the purity, safety, and efficacy of the biosimilar candidate. When developing a biosimilar, the clinical efficacy of the biological product has been proven with trials from the reference biological product; therefore, analytic testing on the molecular structure and biological function becomes the focus. In addition, nonclinical studies in animals are performed, including toxicology and immunogenicity testing. In humans, clinical pharmacology studies are performed to evaluate the safety and the pharmacokinetic and pharmacodynamic properties of the proposed biosimilar. If there is any residual uncertainty about the proposed biological product after this testing, the developer should use guidance from the Food and Drug Administration to determine what additional clinical studies may be needed to adequately address that uncertainty. CONCLUSION: Requirements for the approval of a biosimilar product include analytic characterization, which tests for similarity in primary amino acid structure, analysis of higher-order structure using circular dichroism and nuclear magnetic resonance spectroscopies, detection of posttranslational modifications, assessment of optimal target binding, and testing for impurities and optimal potency.


Asunto(s)
Factores Biológicos/farmacología , Biosimilares Farmacéuticos/farmacología , Aprobación de Drogas , Evaluación Preclínica de Medicamentos/métodos , United States Food and Drug Administration/normas , Animales , Factores Biológicos/química , Factores Biológicos/uso terapéutico , Biosimilares Farmacéuticos/química , Biosimilares Farmacéuticos/uso terapéutico , Química Farmacéutica/métodos , Dicroismo Circular , Ensayos Clínicos Fase III como Asunto/normas , Evaluación Preclínica de Medicamentos/normas , Humanos , Resonancia Magnética Nuclear Biomolecular , Equivalencia Terapéutica , Estados Unidos
10.
Acta Neuropathol Commun ; 4(1): 51, 2016 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-27193190

RESUMEN

Hexanucleotide repeat expansion in the C9orf72 gene is a leading cause of frontotemporal lobar degeneration (FTLD) with amyotrophic lateral sclerosis (ALS). Reduced expression of C9orf72 has been proposed as a possible disease mechanism. However, the cellular function of C9orf72 remains to be characterized. Here we report the identification of two binding partners of C9orf72: SMCR8 and WDR41. We show that WDR41 interacts with the C9orf72/SMCR8 heterodimer and WDR41 is tightly associated with the Golgi complex. We further demonstrate that C9orf72/SMCR8/WDR41 associates with the FIP200/Ulk1 complex, which is essential for autophagy initiation. C9orf72 deficient mice, generated using the CRISPR/Cas9 system, show severe inflammation in multiple organs, including lymph node, spleen and liver. Lymph node enlargement and severe splenomegaly are accompanied with macrophage infiltration. Increased levels of autophagy and lysosomal proteins and autophagy defects were detected in both the spleen and liver of C9orf72 deficient mice, supporting an in vivo role of C9orf72 in regulating the autophagy/lysosome pathway. In summary, our study elucidates potential physiological functions of C9orf72 and disease mechanisms of ALS/FTLD.


Asunto(s)
Autofagia/fisiología , Proteínas Portadoras/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Lisosomas/metabolismo , Proteínas/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia , Proteína C9orf72 , Sistemas CRISPR-Cas , Degeneración Lobar Frontotemporal/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Hígado/metabolismo , Hígado/patología , Ganglios Linfáticos/metabolismo , Ganglios Linfáticos/patología , Ratones Noqueados , Unión Proteica , Multimerización de Proteína , Proteínas Tirosina Quinasas/metabolismo , Bazo/metabolismo , Bazo/patología
11.
Prog Transplant ; 25(3): 263-70, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26308787

RESUMEN

Hyperuricemia is a common comorbid condition experienced by up to 28% of kidney transplant recipients. These patients are at elevated risk of acute flare-ups of gout because of transplant-specific risk factors such as impaired renal function, chronic contributing pharmacotherapy (eg, calcineurin inhibitors, diuretics), and associated comorbid conditions. After transplant, treatment is often complicated by drug-drug interactions, renal impairment, and toxic effects of drugs with the use of first-line recommended agents. A number of therapeutic options remain available for transplant recipients, including dose modifications of historic agents and newer pharmacotherapeutic options. Notably, the Kidney Disease Improving Global Outcomes guidelines address the management of hyperuricemia and gout, but these guidelines were last published in 2009, and new data and treatment options have emerged since then. The management of hyperuricemia and acute and chronic gout is described, including the use of novel agents including urate oxidases, interleukin 1 inhibitors, and human urate transporter 1 inhibitors and alternative immunosuppressive therapy strategies.


Asunto(s)
Gota/prevención & control , Hiperuricemia/prevención & control , Trasplante de Riñón , Interacciones Farmacológicas , Supresores de la Gota/administración & dosificación , Supresores de la Gota/uso terapéutico , Humanos , Inmunosupresores/administración & dosificación , Inmunosupresores/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...