Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comput Intell Neurosci ; 2022: 5054641, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36268157

RESUMEN

With the emergence of the Internet of Things (IoT), investigation of different diseases in healthcare improved, and cloud computing helped to centralize the data and to access patient records throughout the world. In this way, the electrocardiogram (ECG) is used to diagnose heart diseases or abnormalities. The machine learning techniques have been used previously but are feature-based and not as accurate as transfer learning; the proposed development and validation of embedded device prove ECG arrhythmia by using the transfer learning (DVEEA-TL) model. This model is the combination of hardware, software, and two datasets that are augmented and fused and further finds the accuracy results in high proportion as compared to the previous work and research. In the proposed model, a new dataset is made by the combination of the Kaggle dataset and the other, which is made by taking the real-time healthy and unhealthy datasets, and later, the AlexNet transfer learning approach is applied to get a more accurate reading in terms of ECG signals. In this proposed research, the DVEEA-TL model diagnoses the heart abnormality in respect of accuracy during the training and validation stages as 99.9% and 99.8%, respectively, which is the best and more reliable approach as compared to the previous research in this field.


Asunto(s)
Arritmias Cardíacas , Electrocardiografía , Humanos , Electrocardiografía/métodos , Arritmias Cardíacas/diagnóstico , Nube Computacional , Aprendizaje Automático , Programas Informáticos
2.
Comput Intell Neurosci ; 2022: 6852845, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35958748

RESUMEN

According to the World Health Organization (WHO) report, heart disease is spreading throughout the world very rapidly and the situation is becoming alarming in people aged 40 or above (Xu, 2020). Different methods and procedures are adopted to detect and diagnose heart abnormalities. Data scientists are working on finding the different methods with the required accuracy (Strodthoff et al., 2021). Electrocardiogram (ECG) is the procedure to find the heart condition in the waveform. For ages, the machine learning techniques, which are feature based, played a vital role in the medical sciences and centralized the data in cloud computing and having access throughout the world. Furthermore, deep learning or transfer learning widens the vision and introduces different transfer learning methods to ensure accuracy and time management to detect the ECG in a better way in comparison to the previous and machine learning methods. Hence, it is said that transfer learning has turned world research into more appropriate and innovative research. Here, the proposed comparison and accuracy analysis of different transfer learning methods by using ECG classification for detecting ECG Arrhythmia (CAA-TL). The CAA-TL model has the multiclassification of the ECG dataset, which has been taken from Kaggle. Some of the healthy and unhealthy datasets have been taken in real-time, augmented, and fused with the Kaggle dataset, i.e., Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH dataset). The CAA-TL worked on the accuracy of heart problem detection by using different methods like ResNet50, AlexNet, and SqueezeNet. All three deep learning methods showed remarkable accuracy, which is improved from the previous research. The comparison of different deep learning approaches with respect to layers widens the research and gives the more clarity and accuracy and at the same time finds it time-consuming while working with multiclassification with massive dataset of ECG. The implementation of the proposed method showed an accuracy of 98.8%, 90.08%, and 91% for AlexNet, SqueezeNet, and ResNet50, respectively.


Asunto(s)
Aprendizaje Profundo , Arritmias Cardíacas/diagnóstico , Nube Computacional , Electrocardiografía/métodos , Humanos , Aprendizaje Automático
4.
Sci Rep ; 11(1): 15944, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34354197

RESUMEN

This paper presents the analysis of transfer of heat and mass characteristics in boundary layer flow of incompressible magnetohydrodynamic Maxwell nanofluid with thermal radiation effects confined by exponentially shrinking geometry. The effects of Brownian motion and thermophoresis are incorporated using Buongiorno model. The partial differential equations of the governing model are converted in non-dimensional track which are numerically inspected with proper appliances of Runge-Kutta fourth order scheme.The significant effects of heat and mass fluxes on the temperature and nanoparticles volume fractions are investigated. By the increases in Lewis number between [Formula: see text] to [Formula: see text], the decrease in nanoparticle volume fraction and temperature is noted. With the change in the Prandtl constant that varies between [Formula: see text] to [Formula: see text], the nanoparticles volume fraction and temperature are dwindled. Nanoparticles volume fraction and temperature distribution increase is noted with applications of radiation constant. With consequent variation of thermophoresis parameter between [Formula: see text] to [Formula: see text], nanoparticles volume fraction and temperature distribution increases. It is also noted that the increase in thermophoresis parameter and Brownian parameter from [Formula: see text] to [Formula: see text], nanoparticles volume fraction decreases while temperature distribution increases.

5.
Comput Math Methods Med ; 2018: 3461382, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30140301

RESUMEN

A novel reversible digital watermarking technique for medical images to achieve high level of secrecy, tamper detection, and blind recovery of the original image is proposed. The technique selects some of the pixels from the host image using chaotic key for embedding a chaotically generated watermark. The rest of the pixels are converted to residues by using the Residue Number System (RNS). The chaotically selected pixels are represented by the polynomial. A primitive polynomial of degree four is chosen that divides the message polynomial and consequently the remainder is obtained. The obtained remainder is XORed with the watermark and appended along with the message. The decoder receives the appended message and divides it by the same primitive polynomial and calculates the remainder. The authenticity of watermark is done based on the remainder that is valid, if it is zero and invalid otherwise. On the other hand, residue is divided with a primitive polynomial of degree 3 and the obtained remainder is appended with residue. The secrecy of proposed system is considerably high. It will be almost impossible for the intruder to find out which pixels are watermarked and which are just residue. Moreover, the proposed system also ensures high security due to four keys used in chaotic map. Effectiveness of the scheme is validated through MATLAB simulations and comparison with a similar technique.


Asunto(s)
Algoritmos , Seguridad Computacional , Diagnóstico por Imagen
6.
J Healthc Eng ; 2018: 8137436, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30057734

RESUMEN

A secure spatial domain, hybrid watermarking technique for obtaining watermark (authentication information) robustness and fragility of the host medical image (content integrity) using product codes, chaos theory, and residue number system (RNS) is proposed. The proposed scheme is highly fragile and unrecoverable in terms of the host image, but it is significantly robust and recoverable in terms of the watermark. Altering the medical image may result in misdiagnosis, hence the watermark that may contain patient information and organization logo must be protected against certain attacks. The host medical image is separated into two parts, namely, the region of interest (ROI) and region of noninterest (RONI) using a rectangular region. The RONI part is used to embed the watermark information. Moreover, two watermarks are used: one to achieve authenticity of image and the other to achieve the robustness against both incidental and malicious attacks. Effectiveness in terms of security, robustness, and fragility of the proposed scheme is demonstrated by the simulations and comparison with the other state-of-the-art techniques.


Asunto(s)
Seguridad Computacional , Interpretación de Imagen Asistida por Computador/métodos , Informática Médica/métodos , Algoritmos , Recolección de Datos , Diagnóstico por Imagen/métodos , Humanos , Imagenología Tridimensional , Almacenamiento y Recuperación de la Información , Modelos Estadísticos , Dinámicas no Lineales , Privacidad
7.
ScientificWorldJournal ; 2014: 548082, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24737980

RESUMEN

Cooperative communication is regarded as a key technology in wireless networks, including cognitive radio networks (CRNs), which increases the diversity order of the signal to combat the unfavorable effects of the fading channels, by allowing distributed terminals to collaborate through sophisticated signal processing. Underlay CRNs have strict interference constraints towards the secondary users (SUs) active in the frequency band of the primary users (PUs), which limits their transmit power and their coverage area. Relay selection offers a potential solution to the challenges faced by underlay networks, by selecting either single best relay or a subset of potential relay set under different design requirements and assumptions. The best relay selection schemes proposed in the literature for amplify-and-forward (AF) based underlay cognitive relay networks have been very well studied in terms of outage probability (OP) and bit error rate (BER), which is deficient in multiple relay selection schemes. The novelty of this work is to study the outage behavior of multiple relay selection in the underlay CRN and derive the closed-form expressions for the OP and BER through cumulative distribution function (CDF) of the SNR received at the destination. The effectiveness of relay subset selection is shown through simulation results.


Asunto(s)
Tecnología Inalámbrica , Algoritmos , Redes de Comunicación de Computadores , Simulación por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...