Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small Methods ; 7(8): e2300044, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37075731

RESUMEN

MXene QDs (MQDs) have been effectively used in several fields of biomedical research. Considering the role of hyperactivation of immune system in infectious diseases, especially in COVID-19, MQDs stand as a potential candidate as a nanotherapeutic against viral infections. However, the efficacy of MQDs against SARS-CoV-2 infection has not been tested yet. In this study, Ti3 C2 MQDs are synthesized and their potential in mitigating SARS-CoV-2 infection is investigated.  Physicochemical characterization suggests that MQDs are enriched with abundance of bioactive functional groups such as oxygen, hydrogen, fluorine, and chlorine groups as well as surface titanium oxides. The efficacy of MQDs is tested in VeroE6 cells infected with SARS-CoV-2. These data demonstrate that the treatment with MQDs is able to mitigate multiplication of virus particles, only at very low doses such as 0,15 µg mL-1 . Furthermore, to understand the mechanisms of MQD-mediated anti-COVID properties, global proteomics analysis are performed and determined differentially expressed proteins between MQD-treated and untreated cells. Data reveal that MQDs interfere with the viral life cycle through different mechanisms including the Ca2 + signaling pathway, IFN-α response, virus internalization, replication, and translation. These findings suggest that MQDs can be employed to develop future immunoengineering-based nanotherapeutics strategies against SARS-CoV-2 and other viral infections.


Asunto(s)
COVID-19 , Puntos Cuánticos , Humanos , SARS-CoV-2 , Puntos Cuánticos/química , Titanio/uso terapéutico , Titanio/química
3.
Exp Lung Res ; 47(9): 436-450, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34739337

RESUMEN

Aim of the Study: Many allergens have protease activities. Although the immunomodulatory effects of these antigens are well known, the effects attributed to their protease activities are not thoroughly investigated. We set out to determine the effects of house dust mite (HDM) allergens with varying protease activities on bronchial epithelial cell functions. Materials and methods: BEAS-2B cells were maintained in ALI-culture and stimulated with Der p1 (cysteine protease), Der p6 (serine protease), and Der p2 (non-protease) with and without specific protease inhibitors or heat denaturation. Cell viability and epithelial permeability were measured with MTT and paracellular flux assay, respectively. The effect of heat denaturation on allergen structure was examined using in silico models. Matrix metalloproteinases (MMPs) were investigated at the transcription (qPCR), protein (ELISA), and functional (zymography) levels. Results: Epithelial permeability increased only after Der p6 but not after Der p1 or Der p2 stimulation. Der p2 increased both MMP-2 and MMP-9 expression, while Der p1 increased only MMP-9 expression. The heat-denatured form of Der p1 unexpectedly increased MMP-9 gene expression, which, through the use of in silico models, was attributed to its ability to change receptor connections by the formation of new electrostatic and hydrogen bonds. IL-8 and GM-CSF production were increased after Der p1 and Der p2 but decreased after Der p6 stimulation. IL-6 decreased after Der p1 but increased following stimulation with Der p6 and heat-denatured Der p2. Conclusion: Allergens in house dust mites are capable of inducing various changes in the epithelial cell functions by virtue of their protease activities.


Asunto(s)
Antígenos Dermatofagoides , Células Epiteliales , Metaloproteinasas de la Matriz/metabolismo , Alérgenos , Animales , Línea Celular , Polvo , Células Epiteliales/enzimología , Humanos , Pyroglyphidae
4.
Mol Syst Biol ; 17(10): e10387, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34664389

RESUMEN

We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective.


Asunto(s)
COVID-19/inmunología , Biología Computacional/métodos , Bases de Datos Factuales , SARS-CoV-2/inmunología , Programas Informáticos , Antivirales/uso terapéutico , COVID-19/genética , COVID-19/virología , Gráficos por Computador , Citocinas/genética , Citocinas/inmunología , Minería de Datos/estadística & datos numéricos , Regulación de la Expresión Génica , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/inmunología , Humanos , Inmunidad Celular/efectos de los fármacos , Inmunidad Humoral/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Linfocitos/efectos de los fármacos , Linfocitos/inmunología , Linfocitos/virología , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/inmunología , Células Mieloides/efectos de los fármacos , Células Mieloides/inmunología , Células Mieloides/virología , Mapeo de Interacción de Proteínas , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/inmunología , Proteínas Virales/genética , Proteínas Virales/inmunología , Tratamiento Farmacológico de COVID-19
5.
Nano Today ; 38: 101136, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33753982

RESUMEN

Two-dimensional transition metal carbides/carbonitrides known as MXenes are rapidly growing as multimodal nanoplatforms in biomedicine. Here, taking SARS-CoV-2 as a model, we explored the antiviral properties and immune-profile of a large panel of four highly stable and well-characterized MXenes - Ti3C2Tx, Ta4C3T x , Mo2Ti2C3T x and Nb4C3T x . To start with antiviral assessment, we first selected and deeply analyzed four different SARS-CoV-2 genotypes, common in most countries and carrying the wild type or mutated spike protein. When inhibition of the viral infection was tested in vitro with four viral clades, Ti3C2T x in particular, was able to significantly reduce infection only in SARS-CoV-2/clade GR infected Vero E6 cells. This difference in the antiviral activity, among the four viral particles tested, highlights the importance of considering the viral genotypes and mutations while testing antiviral activity of potential drugs and nanomaterials. Among the other MXenes tested, Mo2Ti2C3T x also showed antiviral properties. Proteomic, functional annotation analysis and comparison to the already published SARS-CoV-2 protein interaction map revealed that MXene-treatment exerts specific inhibitory mechanisms. Envisaging future antiviral MXene-based drug nano-formulations and considering the central importance of the immune response to viral infections, the immune impact of MXenes was evaluated on human primary immune cells by flow cytometry and single-cell mass cytometry on 17 distinct immune subpopulations. Moreover, 40 secreted cytokines were analyzed by Luminex technology. MXene immune profiling revealed i) the excellent bio and immune compatibility of the material, as well as the ability of MXene ii) to inhibit monocytes and iii) to reduce the release of pro-inflammatory cytokines, suggesting an anti-inflammatory effect elicited by MXene. We here report a selection of MXenes and viral SARS-CoV-2 genotypes/mutations, a series of the computational, structural and molecular data depicting deeply the SARS-CoV-2 mechanism of inhibition, as well as high dimensional single-cell immune-MXene profiling. Taken together, our results provide a compendium of knowledge for new developments of MXene-based multi-functioning nanosystems as antivirals and immune-modulators.

6.
Can J Physiol Pharmacol ; 99(5): 449-460, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33689451

RESUMEN

Ribavirin is a guanosine analog with broad-spectrum antiviral activity against RNA viruses. Based on this, we aimed to show the anti-SARS-CoV-2 activity of this drug molecule via in vitro, in silico, and molecular techniques. Ribavirin showed antiviral activity in Vero E6 cells following SARS-CoV-2 infection, whereas the drug itself did not show any toxic effect over the concentration range tested. In silico analysis suggested that ribavirin has a broad-spectrum impact on SARS-CoV-2, acting at different viral proteins. According to the detailed molecular techniques, ribavirin was shown to decrease the expression of TMPRSS2 at both mRNA and protein levels 48 h after treatment. The suppressive effect of ribavirin in ACE2 protein expression was shown to be dependent on cell types. Finally, proteolytic activity assays showed that ribavirin also showed an inhibitory effect on the TMPRSS2 enzyme. Based on these results, we hypothesized that ribavirin may inhibit the expression of TMPRSS2 by modulating the formation of inhibitory G-quadruplex structures at the TMPRSS2 promoter. As a conclusion, ribavirin is a potential antiviral drug for the treatment against SARS-CoV-2, and it interferes with the effects of TMPRSS2 and ACE2 expression.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Antivirales/farmacología , Regulación hacia Abajo/efectos de los fármacos , Ribavirina/farmacología , SARS-CoV-2/efectos de los fármacos , Serina Endopeptidasas/metabolismo , Animales , Células CACO-2 , Chlorocebus aethiops , G-Cuádruplex/efectos de los fármacos , Humanos , Regiones Promotoras Genéticas/genética , SARS-CoV-2/fisiología , Serina Endopeptidasas/genética , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...