Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Arch Toxicol ; 94(6): 1955-1972, 2020 06.
Article En | MEDLINE | ID: mdl-32277266

Inorganic arsenic (iAs) is an environmental diabetogen, but mechanisms underlying its diabetogenic effects are poorly understood. Exposures to arsenite (iAsIII) and its methylated metabolites, methylarsonite (MAsIII) and dimethylarsinite (DMAsIII), have been shown to inhibit glucose-stimulated insulin secretion (GSIS) in pancreatic ß-cells and isolated pancreatic islets. GSIS is regulated by complex mechanisms. Increase in ATP production through metabolism of glucose and other substrates is the ultimate trigger for GSIS in ß-cells. In the present study, we used metabolomics to identify metabolites and pathways perturbed in cultured INS-1 832/13 rat insulinoma cells and isolated murine pancreatic islets by exposures to iAsIII, MAsIII and DMAsIII. We found that the exposures perturbed multiple metabolites, which were enriched primarily in the pathways of amino acid, carbohydrate, phospholipid and carnitine metabolism. However, the effects of arsenicals in INS-1 832/13 cells differed from those in the islets and were exposure specific with very few overlaps between the three arsenicals. In INS-1 832/13 cells, all three arsenicals decreased succinate, a metabolite of Krebs cycle, which provides substrates for ATP synthesis in mitochondria. Acetylcarnitine was decreased consistently by exposures to arsenicals in both the cells and the islets. Acetylcarnitine is usually found in equilibrium with acetyl-CoA, which is the central metabolite in the catabolism of macronutrients and the key substrate for Krebs cycle. It is also thought to play an antioxidant function in mitochondria. Thus, while each of the three trivalent arsenicals perturbed specific metabolic pathways, which may or may not be associated with GSIS, all three arsenicals appeared to impair mechanisms that support ATP production or antioxidant defense in mitochondria. These results suggest that impaired ATP production and/or mitochondrial dysfunction caused by oxidative stress may be the mechanisms underlying the inhibition of GSIS in ß-cells exposed to trivalent arsenicals.


Arsenites/toxicity , Cacodylic Acid/analogs & derivatives , Energy Metabolism/drug effects , Insulinoma/metabolism , Islets of Langerhans/drug effects , Metabolome , Pancreatic Neoplasms/metabolism , Adenosine Triphosphate/metabolism , Animals , Arsenites/metabolism , Biotransformation , Cacodylic Acid/metabolism , Cacodylic Acid/toxicity , Cell Line, Tumor , Insulinoma/pathology , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Male , Metabolomics , Methylation , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Oxidative Stress/drug effects , Pancreatic Neoplasms/pathology , Rats , Tissue Culture Techniques
2.
Elife ; 72018 07 25.
Article En | MEDLINE | ID: mdl-30039798

The early-life intestinal microbiota plays a key role in shaping host immune system development. We found that a single early-life antibiotic course (1PAT) accelerated type 1 diabetes (T1D) development in male NOD mice. The single course had deep and persistent effects on the intestinal microbiome, leading to altered cecal, hepatic, and serum metabolites. The exposure elicited sex-specific effects on chromatin states in the ileum and liver and perturbed ileal gene expression, altering normal maturational patterns. The global signature changes included specific genes controlling both innate and adaptive immunity. Microbiome analysis revealed four taxa each that potentially protect against or accelerate T1D onset, that were linked in a network model to specific differences in ileal gene expression. This simplified animal model reveals multiple potential pathways to understand pathogenesis by which early-life gut microbiome perturbations alter a global suite of intestinal responses, contributing to the accelerated and enhanced T1D development.


Anti-Bacterial Agents/adverse effects , Diabetes Mellitus, Type 1/immunology , Gastrointestinal Microbiome/immunology , Immunity, Innate/drug effects , Adaptive Immunity/drug effects , Animals , Anti-Bacterial Agents/immunology , Diabetes Mellitus, Type 1/microbiology , Diabetes Mellitus, Type 1/pathology , Female , Gastrointestinal Microbiome/drug effects , Ileum/immunology , Ileum/microbiology , Immunity, Innate/immunology , Intestines/microbiology , Mice , Mice, Inbred NOD , Microbiota/drug effects , Microbiota/immunology
...