Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 114
1.
Phytomedicine ; 130: 155746, 2024 May 15.
Article En | MEDLINE | ID: mdl-38763012

BACKGROUND: Triple-negative breast cancer (TNBC) is a category of breast cancer characterized with high molecular heterogeneity. Owing to the lack of effective therapeutic strategies, patients with TNBC have a poor prognosis. Paris saponin VII (PSⅦ), a steroidal saponin extracted from the rhizome of Trichillium tschonoskii Maxim, exhibits excellent anti-cancer activity in a variety of solid tumors. However, the role and potential mechanism of PSⅦ against TNBC remain unexplored. PURPOSE: This study aimed to elucidate the therapeutic effects of PSⅦ against TNBC and explore the potential mechanism of action. METHODS: We combined the analysis of public single-cell sequencing data with weighted gene co-expression network analysis (WGCNA) to identity differentially expressed genes (DEGs) that distinguished malignant and normal epithelial cells in TNBC. Subsequently, the biological features of DEGs in TNBC were evaluated. Gene set enrichment analysis (GSEA) was used to define potential pathways associated with the DEGs. The pharmacological activity of PSⅦ for TNBC was evidenced via in vitro and in vivo experiments, and molecular docking, molecular dynamics (MD), surface plasmon resonance (SPR) assay and western blotting were employed to confirm the relative mechanisms. RESULTS: Single-cell sequencing and WGCNA revealed STMN1 as a pivotal biomarker of TNBC. STMN1 overexpression in TNBC was associated with poor patient prognosis. GSEA revealed a significant accumulation of STMN1 within the MAPK signaling pathway. Furthermore, In vitro experiments showed that PSⅦ showed significantly suppressive actions on the proliferation, migration and invasion abilities for TNBC cells, while inducing apoptosis. Molecular docking, MD analysis and SPR assay indicated a robust interaction between PSⅦ and the MEK protein. Western blotting revealed that PSⅦ may inhibit tumor progression by suppressing the phosphorylation of MEK1/2 and the downstream phosphorylation of ERK1/2 and STMN1. Intraperitoneal injection of PSⅦ (10 mg/kg) notably reduced tumor growth by 71.26 % in a 4T1 xenograft model. CONCLUSION: In our study, the systems biology method was used to identify potential therapeutic targets for TNBC. In vitro and in vivo experiments demonstrated PSⅦ suppresses cancer progression by targeting the MEK/ERK/STMN1 signaling axis. For the first time, the inhibition of STMN1 phosphorylation has been indicated as a possible mechanism for the anticancer effects of PSⅦ. These results emphasize the potential value of PSⅦ as a promising anti-cancer drug candidate for further development in the field of TNBC therapeutics.

3.
Int J Oncol ; 64(5)2024 05.
Article En | MEDLINE | ID: mdl-38577950

Compared with primary tumor sites, metastatic sites appear more resistant to treatments and respond differently to the treatment regimen. It may be due to the heterogeneity in the microenvironment between metastatic sites and primary tumors. Cancer­associated fibroblasts (CAFs) are widely present in the tumor stroma as key components of the tumor microenvironment. Primary tumor CAFs (pCAFs) and metastatic CAFs (mCAFs) are heterogeneous in terms of source, activation mode, markers and functional phenotypes. They can shape the tumor microenvironment according to organ, showing heterogeneity between primary tumors and metastases, which may affect the sensitivity of these sites to treatment. It was hypothesized that understanding the heterogeneity between pCAFs and mCAFs can provide a glimpse into the difference in treatment outcomes, providing new ideas for improving the rate of metastasis control in various cancers.


Cancer-Associated Fibroblasts , Neoplasms , Humans , Cancer-Associated Fibroblasts/pathology , Fibroblasts/pathology , Neoplasms/drug therapy , Neoplasms/pathology , Treatment Outcome , Tumor Microenvironment
4.
Front Oncol ; 14: 1321445, 2024.
Article En | MEDLINE | ID: mdl-38434685

Background: Patients with schizophrenia are at a higher risk of developing cancer. However, the causal relationship between schizophrenia and different tumor types remains unclear. Methods: Using a two-sample, two-way Mendelian randomization method, we used publicly available genome-wide association analysis (GWAS) aggregate data to study the causal relationship between schizophrenia and different cancer risk factors. These tumors included lung adenocarcinoma, lung squamous cell carcinoma, small-cell lung cancer, gastric cancer, alcohol-related hepatocellular cancer, tumors involving the lungs, breast, thyroid gland, pancreas, prostate, ovaries and cervix, endometrium, colon and colorectum, and bladder. We used the inverse variance weighting (IVW) method to determine the causal relationship between schizophrenia and different tumor risk factors. In addition, we conducted a sensitivity test to evaluate the effectiveness of the causality. Results: After adjusting for heterogeneity, evidence of a causal relationship between schizophrenia and lung cancer risk was observed (odds ratio [OR]=1.001, 95% confidence interval [CI], 1.000-1.001; P=0.0155). In the sensitivity analysis, the causal effect of schizophrenia on the risk of lung cancer was consistent in both direction and degree. However, no evidence of causality or reverse causality between schizophrenia and other tumors was found. Conclusion: This study elucidated a causal relationship between the genetic predictors of schizophrenia and the risk of lung cancer, thereby providing a basis for the prevention, pathogenesis, and treatment of schizophrenia in patients with lung cancer.

5.
Heliyon ; 10(6): e27356, 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38500978

Background: Circadian rhythm is an internal timing system generated by circadian-related genes (CRGs). Disruption in this rhythm has been associated with a heightened risk of breast cancer (BC) and regulation of the immune microenvironment of tumors. This study aimed to investigate the clinical significance of CRGs in BC and the immune microenvironment. Methods: CRGs were identified using the GeneCards and MSigDB databases. Through unsupervised clustering, we identified two circadian-related subtypes in patients with BC. We constructed a prognostic model and nomogram for circadian-related risk scores using LASSO and Cox regression analyses. Using multi-omics analysis, the mutation profile and immunological microenvironment of tumors were investigated, and the immunotherapy response in different groups of patients was predicted based on their risk strata. Results: The two circadian-related subtypes of BC that were identified differed significantly in their prognoses, clinical characteristics, and tumor immune microenvironments. Subsequently, we constructed a circadian-related risk score (CRRS) model containing eight signatures (SIAH2, EZR, GSN, TAGLN2, PRDX1, MCM4, EIF4EBP1, and CD248) and a nomogram. High-risk individuals had a greater burden of tumor mutations, richer immune cell infiltration, and higher expression of immune checkpoint genes, than low-risk individuals, indicating a "hot tumor" immune phenotype and a more favorable treatment outcome. Conclusions: Two circadian-related subtypes of BC were identified and used to establish a CRRS prognostic model and nomogram. These will be valuable in providing guidance for forecasting prognosis and developing personalized treatment plans for BC.

6.
Int J Biol Sci ; 20(5): 1884-1904, 2024.
Article En | MEDLINE | ID: mdl-38481820

Due to the unique characteristics of breast cancer initiation sites and significant alterations in tumor metabolism, breast cancer cells rely on lipid metabolic reprogramming to effectively regulate metabolic programs during the disease progression cascade. This adaptation enables them to meet the energy demands required for proliferation, invasion, metastasis, and responses to signaling molecules in the breast cancer microenvironment. In this review, we comprehensively examined the distinctive features of lipid metabolic reprogramming in breast cancer and elucidated the underlying mechanisms driving aberrant behavior of tumor cells. Additionally, we emphasize the potential role and adaptive changes in lipid metabolism within the breast cancer microenvironment, while summarizing recent preclinical studies. Overall, precise control over lipid metabolism rewiring and understanding of plasticity within the breast cancer microenvironment hold promising implications for developing targeted treatment strategies against this disease. Therefore, interventions targeting the lipid metabolism in breast cancer may facilitate innovative advancements in clinical applications.


Breast Neoplasms , Neoplasms , Humans , Female , Breast Neoplasms/metabolism , Lipid Metabolism/genetics , Neoplasms/metabolism , Metabolic Reprogramming , Tumor Microenvironment/physiology , Lipids
7.
Front Immunol ; 15: 1338680, 2024.
Article En | MEDLINE | ID: mdl-38415245

T cell senescence is an indication of T cell dysfunction. The ability of senescent T cells to respond to cognate antigens is reduced and they are in the late stage of differentiation and proliferation; therefore, they cannot recognize and eliminate tumor cells in a timely and effective manner, leading to the formation of the suppressive tumor microenvironment. Establishing methods to reverse T cell senescence is particularly important for immunotherapy. Aging exacerbates profound changes in the immune system, leading to increased susceptibility to chronic, infectious, and autoimmune diseases. Patients with malignant lung tumors have impaired immune function with a high risk of recurrence, metastasis, and mortality. Immunotherapy based on PD-1, PD-L1, CTLA-4, and other immune checkpoints is promising for treating lung malignancies. However, T cell senescence can lead to low efficacy or unsuccessful treatment results in some immunotherapies. Efficiently blocking and reversing T cell senescence is a key goal of the enhancement of tumor immunotherapy. This study discusses the characteristics, mechanism, and expression of T cell senescence in malignant lung tumors and the treatment strategies.


Lung Neoplasms , Humans , T-Cell Senescence , T-Lymphocytes , Immunotherapy/methods , Aging , Tumor Microenvironment
8.
Biomed Pharmacother ; 170: 115976, 2024 Jan.
Article En | MEDLINE | ID: mdl-38043444

T helper (Th) cells have received extensive attention owing to their indispensable roles in anti-tumor immune responses. Th1 and Th2 cells are two key subsets of Th cells that exist in relative equilibrium through the secretion of cytokines that suppress their respective immune response. When the type of cytokine in the tumor microenvironment is altered, this equilibrium may be disrupted, leading to a shift from Th1 to Th2 immune response. Th1/Th2 imbalance is one of the decisive factors in the development of malignant tumors. Therefore, focusing on the balance of Th1/Th2 anti-tumor immune responses may enable future breakthroughs in cancer immunotherapy. Polysaccharides can regulate the imbalance between Th1 and Th2 cells and their characteristic cytokine profiles, thereby improving the tumor immune microenvironment. To our knowledge, this study is the most comprehensive assessment of the regulation of the tumor Th1/Th2 balance by polysaccharides. Herein, we systematically summarized the intrinsic molecular mechanisms of polysaccharides in the regulation of Th1 and Th2 cells to provide a new perspective and potential target drugs for improved anti-tumor immunity and delayed tumor progression.


Neoplasms , Th1 Cells , Humans , Th2 Cells , Cytokines , Immunotherapy , Neoplasms/drug therapy , Polysaccharides/therapeutic use , Tumor Microenvironment
9.
Br J Pharmacol ; 2023 Nov 08.
Article En | MEDLINE | ID: mdl-37940117

Angiogenesis is the process by which new blood vessels form and is required for tumour growth and metastasis. It helps in supplying oxygen and nutrients to tumour cells and plays a crucial role in the local progression and distant metastasis of, and development of treatment resistance in, breast cancer. Tumour angiogenesis is currently regarded as a critical therapeutic target; however, anti-angiogenic therapy for breast cancer fails to produce satisfactory results, owing to issues such as inconsistent efficacy and significant adverse reactions. As a result, new anti-angiogenic drugs are urgently needed. Flavonoids, a class of natural compounds found in many foods, are inexpensive, widely available, and exhibit a broad range of biological activities, low toxicity, and favourable safety profiles. Several studies find that various flavonoids inhibit angiogenesis in breast cancer, indicating great therapeutic potential. In this review, we summarize the role of angiogenesis in breast cancer and the potential of natural flavonoids as anti-angiogenic agents for breast cancer treatment. We discuss the value and significance of nanotechnology for improving flavonoid absorption and utilization and anti-angiogenic effects, as well as the challenges of using natural flavonoids as drugs.

10.
J Transl Med ; 21(1): 827, 2023 11 17.
Article En | MEDLINE | ID: mdl-37978384

Cancer-associated fibroblasts (CAFs) are the most abundant stromal cell population in breast tumors. A functionally diverse population of CAFs increases the dynamic complexity of the tumor microenvironment (TME). The intertwined network of the TME facilitates the interaction between activated CAFs and breast cancer cells, which can lead to the proliferation and invasion of breast cells. Considering the special transmission function of CAFs, the aim of this review is to summarize and highlight the crosstalk between CAFs and breast cancer cells in the TME as well as the relationship between CAFs and extracellular matrix (ECM), soluble cytokines, and other stromal cells in the metastatic state. The crosstalk between cancer-associated fibroblasts and tumor microenvironment also provides a plastic therapeutic target for breast cancer metastasis. In the course of the study, the inhibitory effects of different natural compounds on targeting CAFs and the advantages of different drug combinations were summarized. CAFs are also widely used in the diagnosis and treatment of breast cancer. The cumulative research on this phenomenon supports the establishment of a targeted immune microenvironment as a possible breakthrough in the prevention of invasive metastasis of breast cancer.


Breast Neoplasms , Cancer-Associated Fibroblasts , Humans , Female , Breast Neoplasms/pathology , Cancer-Associated Fibroblasts/pathology , Fibroblasts/pathology , Breast/pathology , Tumor Microenvironment , Melanoma, Cutaneous Malignant
11.
Biomed Pharmacother ; 167: 115622, 2023 Nov.
Article En | MEDLINE | ID: mdl-37783155

The tumor microenvironment (TME), the "soil" on which tumor cells grow, has an important role in regulating the proliferation and metastasis of tumor cells as well as their response to treatment. Cancer-associated fibroblasts (CAFs), as the most abundant stromal cells of the TME, can not only directly alter the immunosuppressive effect of the TME through their own metabolism, but also influence the aggregation and function of immune cells by secreting a large number of cytokines and chemokines, reducing the body's immune surveillance of tumor cells and making them more prone to immune escape. Our study provides a comprehensive review of fibroblast chemotaxis, malignant transformation, metabolic characteristics, and interactions with immune cells. In addition, the current small molecule drugs targeting CAFs have been summarized, including both natural small molecules and targeted drugs for current clinical therapeutic applications. A complete review of the role of fibroblasts in TME from an immune perspective is presented, which has important implications in improving the efficiency of immunotherapy by targeting fibroblasts.


Cancer-Associated Fibroblasts , Neoplasms , Humans , Neoplasms/drug therapy , Fibroblasts , Chemotaxis , Biological Transport , Tumor Microenvironment
12.
Front Pharmacol ; 14: 1250893, 2023.
Article En | MEDLINE | ID: mdl-37841927

The Wnt/ß-catenin pathway is abnormally activated in most lung cancer tissues and considered to be an accelerator of carcinogenesis and lung cancer progression, which is closely related to increased morbidity rates, malignant progression, and treatment resistance. Although targeting the canonical Wnt/ß-catenin pathway shows significant potential for lung cancer therapy, it still faces challenges owing to its complexity, tumor heterogeneity and wide physiological activity. Therefore, it is necessary to elucidate the role of the abnormal activation of the Wnt/ß-catenin pathway in lung cancer progression. Moreover, Wnt inhibitors used in lung cancer clinical trials are expected to break existing therapeutic patterns, although their adverse effects limit the treatment window. This is the first study to summarize the research progress on various compounds, including natural products and derivatives, that target the canonical Wnt pathway in lung cancer to develop safer and more targeted drugs or alternatives. Various natural products have been found to inhibit Wnt/ß-catenin in various ways, such as through upstream and downstream intervention pathways, and have shown encouraging preclinical anti-tumor efficacy. Their diversity and low toxicity make them a popular research topic, laying the foundation for further combination therapies and drug development.

13.
Biomed Pharmacother ; 168: 115707, 2023 Dec.
Article En | MEDLINE | ID: mdl-37862969

In Chinese medicine, the Cucurbitaceae family contains many compounds known as cucurbitacins, which have been categorized into 12 classes ranging from A to T and more than 200 derivatives. Cucurbitacins are a class of highly oxidized tetracyclic triterpenoids with potent anticancer properties. The eight components of cucurbitacins with the strongest anticancer activity are cucurbitacins B, D, E, I, IIa, L-glucoside, Q, and R. Cucurbitacins have also been reported to suppress JAK-STAT 3, mTOR, VEGFR, Wnt/ß-catenin, and MAPK signaling pathways, all of which are crucial for the survival and demise of cancer cells. In this paper, we review the progress in research on cucurbitacin-induced apoptosis, autophagy, cytoskeleton disruption, cell cycle arrest, inhibition of cell proliferation, inhibition of invasion and migration, inhibition of angiogenesis, epigenetic alterations, and synergistic anticancer effects in tumor cells. Recent studies have identified cucurbitacins as promising molecules for therapeutic innovation with broad versatility in immune response. Thus, cucurbitacin is a promising class of anticancer agents that can be used alone or in combination with chemotherapy and radiotherapy for the treatment of many types of cancer.Therefore, based on the research reports in the past five years at home and abroad, we further summarize and review the structural characteristics, chemical and biological activities, and studies of cucurbitacins based on the previous studies to provide a reference for further development and utilization of cucurbitacins.


Antineoplastic Agents , Neoplasms , Triterpenes , Humans , Cucurbitacins/pharmacology , Cucurbitacins/therapeutic use , Cucurbitacins/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Triterpenes/pharmacology , Triterpenes/therapeutic use , Neoplasms/drug therapy , Neoplasms/pathology , Cell Cycle Checkpoints , Cell Proliferation
14.
Front Mol Biosci ; 10: 1275774, 2023.
Article En | MEDLINE | ID: mdl-37818101

Acute myeloid leukemia (AML) is a highly aggressive hematologic malignancy with a 5-year survival rate of less than 30%. Continuous updating of diagnostic and therapeutic strategies has not been effective in improving the clinical benefit of AML. AML cells are prone to iron metabolism imbalance due to their unique pathological characteristics, and ferroptosis is a novel cell death mode that is dominated by three cellular biological processes: iron metabolism, oxidative stress and lipid metabolism. An in-depth exploration of the unique ferroptosis mechanism in AML can provide new insights for the diagnosis and treatment of this disease. This study summarizes recent studies on ferroptosis in AML cells and suggests that the metabolic characteristics, gene mutation patterns, and dependence on mitochondria of AML cells greatly increase their susceptibility to ferroptosis. In addition, this study suggests that AML cells can establish a variety of strategies to evade ferroptosis to maintain their survival during the process of occurrence and development, and summarizes the related drugs targeting ferroptosis pathway in AML treatment, which provides development directions for the subsequent mechanism research and clinical treatment of AML.

15.
Biomed Pharmacother ; 166: 115414, 2023 Oct.
Article En | MEDLINE | ID: mdl-37660651

Tumor-associated macrophages (TAMs) are the most critical effector cells of innate immunity and the most abundant tumor-infiltrating immune cells. They play a key role in the clearance of apoptotic bodies, regulation of inflammation, and tissue repair to maintain homeostasis in vivo. With the progression of triple-negative breast cancer(TNBC), TAMs are "subverted" from tumor-promoting immune cells to tumor-promoting immune suppressor cells, which play a significant role in tumor development and are considered potential targets for cancer therapy. Here, we explored how macrophages, as the most important part of the TNBC ecosystem, are "subverted" to drive cancer evolution and the uniqueness of TAMs in TNBC progression and metastasis. Similarly, we discuss the rationale and available evidence for TAMs as potential targets for TNBC therapy.


Triple Negative Breast Neoplasms , Humans , Ecosystem , Macrophages , Tumor-Associated Macrophages , Immunity, Innate
17.
World J Clin Cases ; 11(15): 3643-3650, 2023 May 26.
Article En | MEDLINE | ID: mdl-37383892

BACKGROUND: Chronic myelomonocytic leukemia (CMML), a rare clonal hematopoietic stem cell disorder characterized by myelodysplastic syndrome and myeloproliferative neoplasms, has a generally poor prognosis, and easily progresses to acute myeloid leukemia. The simultaneous incidence of hematologic malignancies and solid tumors is extremely low, and CMML coinciding with lung malignancies is even rarer. Here, we report a case of CMML, with ASXL1 and EZH2 gene mutations, combined with non-small cell lung cancer (lung squamous cell carcinoma). CASE SUMMARY: A 63-year-old male, suffering from toothache accompanied by coughing, sputum, and bloody sputum for three months, was given a blood test after experiencing continuous bleeding resulting from a tooth extraction at a local hospital. Based on morphological results, the patient was diagnosed with CMML and bronchoscopy was performed in situ to confirm the diagnosis of squamous cell carcinoma in the lower lobe of the lung. After receiving azacitidine, programmed cell death protein 1, and platinum-based chemotherapy drugs, the patient developed severe myelosuppression and eventually fatal leukocyte stasis and dyspnea. CONCLUSION: During the treatment and observation of CMML and be vigilant of the growth of multiple primary malignant tumors.

18.
Crit Rev Food Sci Nutr ; : 1-17, 2023 Apr 27.
Article En | MEDLINE | ID: mdl-37128778

Natural plants have acquired an increasing attention in biomedical research. Recent studies have revealed that plant-derived nanoparticles (PDNPs), which are nano-sized membrane vesicles released by plants, are one of the important material bases for the health promotion of natural plants. A great deal of research in this field has focused on nanoparticles derived from fresh vegetables and fruits. Generally, PDNPs contain lipids, proteins, nucleic acids, and other active small molecules and exhibit unique biological regulatory activity and editability. Specifically, they have emerged as important mediators of intercellular communication, and thus, are potentially suitable for therapeutic purposes. In this review, PDNPs were extensively explored; by evaluating them systematically starting from the origin and isolation, toward their characteristics, including morphological compositions, biological functions, and delivery potentials, as well as distinguishing them from plant-derived exosomes and highlighting the limitations of the current research. Meanwhile, we elucidated the variations in PDNPs infected by pathogenic microorganisms and emphasized on the biological functions and characteristics of plant virus nanoparticles. After clarifying these problems, it is beneficial to further research on PDNPs in the future and develop their clinical application value.

19.
Biomed Pharmacother ; 162: 114698, 2023 Jun.
Article En | MEDLINE | ID: mdl-37060661

With the rapid development of next-generation sequencing technology, several studies have shown that ncRNAs can act as competitive endogenous RNAs (ceRNAs) and are involved in various biological processes, such as proliferation, differentiation, apoptosis, and migration of breast cancer (BC) cells, and plays an important role in BC progression as a molecular target for its diagnosis, treatment, prognosis, and differentiation of subtypes and age groups of BC patients. Based on the description of ceRNA-related biological functions, this study screened and sorted the sequencing analysis and experimental verification conclusions of BC-related ceRNAs and found that the ncRNAs mediated ceRNA networks can promote the development of BC by promoting the expression of genes related to BC proliferation, drug resistance, and apoptosis, inducing the production of epithelial-mesenchymal transition (EMT) to promote metastasis and activating cancer-related signaling pathways.


Breast Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Female , Breast Neoplasms/genetics , MicroRNAs/genetics , Transcriptome , RNA, Untranslated/genetics , Gene Expression Profiling , Gene Regulatory Networks , RNA, Long Noncoding/genetics , Gene Expression Regulation, Neoplastic
20.
FEBS Open Bio ; 13(1): 72-88, 2023 01.
Article En | MEDLINE | ID: mdl-36282125

Lung cancer is the leading cause of cancer-related mortality in men and women globally. Non-small cell lung cancer (NSCLC) is the most prevalent subtype, accounting for 85-90% of all cancers. Although there have been dramatic advances in therapeutic approaches in recent decades, the recurrence and metastasis rates of NSCLC are as high as 30-40% with the 5-year overall survival rate being less than 15%. Therefore, it is necessary to explore the pathogenesis of NSCLC at the genetic level and identify prognostic biomarkers and novel therapeutic targets. Here, we aimed to identify mutated genes with high frequencies in Chinese NSCLC patients using next-generation sequencing and to investigate their relationships with the tumor mutation burden (TMB) and tumor immune microenvironment. A total of 110 NSCLC patients were enrolled to profile the genetic variations. Mutations in EGFR (62.37%), TP53 (61.29%), LRP1B (13.98%), FAT1 (12.90%), KMT2D (11.83%), CREBBP (10.75%), and RB1 (9.68%) were most prevalent. TP53, LRP1B, KMT2D, and CREBBP mutations were all significantly associated with high TMB (P < 0.05 or P < 0.01). The infiltrating levels of immune cells and immune molecules were enriched significantly in the LRP1B mutation group. LRP1B mutations significantly correlated with stimulating and inhibitory immunoregulators. Gene set enrichment analysis revealed that cell cycle, the Notch signaling pathway, the insulin signaling pathway, and the mTOR signaling pathway are related to LRP1B mutations in the immune system. LRP1B mutations may be of clinical importance in enhancing the anti-tumor immune response and may be a promising biomarker for predicting immunotherapy responsiveness.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Male , Humans , Female , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Prognosis , Biomarkers, Tumor/genetics , Signal Transduction , Tumor Microenvironment/genetics
...