Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharm Dev Technol ; 26(2): 150-156, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33267700

RESUMEN

Magnesium stearate (MgSt) is a widely used pharmaceutical lubricant in tablet manufacturing. However, batch-to-batch variability in hydrate form and surface area can lead to inconsistency in tablet performance. In this work, several unique MgSt samples were studied: traditional monohydrate samples with high surface area, dihydrate forms with high and low surface area, and disordered forms with low and medium water content. The effects of solid-state form and particle properties on lubrication efficiency, tabletability and dissolution were studied for tablets in a model direct compression formulation. It was found that the monohydrate and dihydrate forms had good lubrication efficiency compared to the disordered form, while the disordered form had the best tabletability. The dissolution rate correlated with surface area, where slower dissolution rates corresponded with higher MgSt surface areas. The dihydrate sample with lower surface area had the best performance for this model formulation, in terms of lubrication efficiency, tabletability and dissolution. Overall, it is concluded that the choice of the most appropriate grade of MgSt for a particular formulation depends on a comprehensive evaluation of the impact of MgSt properties on lubrication efficiency, tabletability and dissolution.


Asunto(s)
Excipientes/química , Lubricantes/química , Ácidos Esteáricos/química , Química Farmacéutica/métodos , Liberación de Fármacos , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/química , Solubilidad , Comprimidos , Agua/química
2.
Acta Crystallogr C Struct Chem ; 76(Pt 7): 632-638, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32624509

RESUMEN

Six isostructural crystalline solvates of the active pharmaceutical ingredient celecoxib {4-[5-(4-methylphenyl)-3-(trifluoromethyl)pyrazol-1-yl]benzenesulfonamide; C17H14F3N3O2S} are described, containing dimethylformamide (DMF, C3H7NO, 1), dimethylacetamide (DMA, C4H9NO, 2), N-methylpyrrolidin-2-one (NMP, C5H9NO, 3), tetramethylurea (TMU, C5H12N2O, 4), 1,3-dimethyl-3,4,5,6-tetrahydropyrimidin-2(1H)-one (DMPU, C6H12N2O, 5) or dimethyl sulfoxide (DMSO, C2H6OS, 6). The host celecoxib structure contains one-dimensional channel voids accommodating the solvent molecules, which accept hydrogen bonds from the NH2 groups of two celecoxib molecules. The solvent binding sites have local twofold rotation symmetry, which is consistent with the point symmetry of the solvent molecule in 4 and 5, but introduces orientational disorder for the solvent molecules in 1, 2, 3 and 6. Despite the isostructurality of 1-6, the unit-cell volume and solvent-accessible void space show significant variation. In particular, 4 and 5 show an enlarged and skewed unit cell, which can be attributed to a specific interaction between an N-CH3 group in the solvent molecule and the toluene group of celecoxib. Intermolecular interaction energies calculated using the PIXEL method show that the total interaction energy between the celecoxib and solvent molecules is broadly correlated with the molecular volume of the solvent, except in 6, where the increased polarity of the S=O bond leads to greater overall stabilization compared to the similarly-sized DMF molecule in 1. In the structures showing disorder, the most stable orientations of the solvent molecules make C-H...O contacts to the S=O groups of celecoxib.

3.
Int J Pharm ; 543(1-2): 46-51, 2018 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-29588210

RESUMEN

Piroxicam crystallises into two polytypes, α1 and α2, with crystal structures that contain identical molecular layers but differ in the way that these layers are stacked. In spite of having close structural similarity, the polytypes have significantly different powder tabletting behaviour: α2 forms only weak tablets at low pressures accompanied by extensive capping and lamination, which make it impossible to form intact tablets above 100 MPa, while α1 exhibits superior tabletability over the investigated pressure range (up to 140 MPa). The potential structural origin of the different behaviour is sought using energy-vector models, produced from pairwise intermolecular interaction energies calculated using the PIXEL method. The analysis reveals that the most stabilising intermolecular interactions define columns in both crystal structures. In α2, a strongly stabilising interaction between inversion-related molecules links these columns into a 2-D network, while no comparable interaction exists in α1. The higher dimensionality of the energy-vector model in α2 may be one contributor to its inferior tabletability. A consideration of probable slip planes in the structures identifies regions where the benzothiazine groups of the molecules meet. The energy-vector models in this region are geometrically similar for both structures, but the interactions are more stabilising in α2 compared to α1. This feature may also contribute to the inferior tabletability of α2.


Asunto(s)
Antiinflamatorios no Esteroideos/química , Piroxicam/química , Cristalización , Composición de Medicamentos , Modelos Químicos , Comprimidos
4.
J Pharm Sci ; 105(6): 1960-1966, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27238493

RESUMEN

5-Fluorocytosine (FC) is a high-dose antifungal drug that challenges the development of a tablet product due to poor solid-state stability and tabletability. Using 2 pharmaceutically acceptable conjugate acid base (CAB) cocrystals of FC with HCl and acesulfame, we have developed commercially viable high loading FC tablets. The tablets were prepared by direct compression using nano-coated microcrystalline cellulose Avicel PH105 as a tablet binder, which provided both excellent tabletability and good flowability. Commercial manufacturability of formulations based on both CAB cocrystals was verified on a compaction simulator. The results from an expedited friability study were used to set the compaction force, which yielded tablets with sufficient mechanical strength and rapid tablet disintegration. This work demonstrates the potential value of CAB cocrystals in drug product development.


Asunto(s)
Antifúngicos/síntesis química , Química Farmacéutica/métodos , Flucitosina/síntesis química , Cristalización/métodos , Ácido Clorhídrico/síntesis química , Comprimidos , Resistencia a la Tracción , Tiazinas/síntesis química , Difracción de Rayos X/métodos
5.
Mol Pharm ; 10(6): 2462-6, 2013 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-23631720

RESUMEN

5-Fluorocytosine (FC), an antifungal drug and a cytosine derivative, has a complex solid-state landscape that challenges its development into a drug product. A total of eight new FC salts, both cytosinium and hemicytosinium, with four strong acids were prepared by controlling acid concentration in the crystallization medium. The pharmaceutically acceptable saccharin salt of FC exhibits superior phase stability and, hence, has the potential to address the instability problem of FC associated with hydration.


Asunto(s)
Flucitosina/química , Antifúngicos/química , Cristalización , Estabilidad de Medicamentos , Termogravimetría , Difracción de Rayos X
6.
Mol Pharm ; 9(7): 1953-61, 2012 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-22663898

RESUMEN

Pharmaceutical powder engineering often involves forming interfaces between the drug and a suitable polymer. The structure at the interface plays a critical role in the properties and performance of the composite. However, interface structures have not been well understood due to a lack of suitable characterization tool. In this work, we have used ellipsometry and neutron reflectometry to characterize the structure of such interfaces in detail. Ellipsometry provided a quick estimate of the number of layers and their thicknesses, whereas neutron reflectometry provided richer structural information such as density, thickness, roughness, and intermixing of different layers. The combined information allowed us to develop an accurate model about the layered structure and provided information about intermixing of different layer components. Systematic use of these characterization techniques on several model systems suggests that the nature of the polymer had a small effect on the interfacial structure, while the solvent used in polymer coating had a large effect. These results provide useful information on the efforts of engineering particle properties through the control of the interfacial chemistry.


Asunto(s)
Polímeros/química , Polvos/química , Cristalización , Neutrones , Solventes/química , Propiedades de Superficie
7.
Int J Pharm ; 378(1-2): 136-9, 2009 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-19477257

RESUMEN

Deep eutectic solvent (DES) is a new class of solvents typically formed by mixing choline chloride with hydrogen bond donors such as amines, acids, and alcohols. Most DES's are non-reactive with water, biodegradable, and have acceptable toxicity profiles. Urea-choline chloride and malonic acid-choline chloride eutectic systems were characterized using differential scanning calorimetry (DSC) and thermal microscopy. A potential new 2:1 urea-choline chloride cocrystal with a melting point of 25 degrees C was characterized at the eutectic composition. The formation of this cocrystal suggests that DES should not be universally explained by simple eutectic melting, and may be useful in guiding the search for new DES systems. The lack of nucleation of the malonic acid-choline chloride system prohibited the construction of a phase diagram for this system using DSC. We also investigated possible uses of DES in solubilizing poorly soluble compounds for enhanced bioavailability in early drug development such as toxicology studies. For five poorly soluble model compounds, solubility in DES is 5 to 22,000 folds more than that in water. Thus, DES can be a promising vehicle for increasing exposure of poorly soluble compounds in preclinical studies.


Asunto(s)
Diseño de Fármacos , Malonatos/química , Solventes/química , Urea/química , Rastreo Diferencial de Calorimetría , Colina/química , Enlace de Hidrógeno , Microscopía/métodos , Preparaciones Farmacéuticas/química , Transición de Fase , Solubilidad , Temperatura de Transición
8.
J Pharm Sci ; 96(12): 3324-33, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17542021

RESUMEN

Certain crystallographic features, such as the existence of slip planes, can greatly facilitate the ability of crystals to deform plastically. An investigation of the relationship between the slip planes and the tableting performance of the crystals of methyl, ethyl, n-propyl, and n-butyl 4-hydroxybenzoate (parabens) was conducted. The absence of slip planes in methyl paraben crystal structure results in significantly poorer tableting performance than the other three parabens. While slip planes are present in the crystal structures of ethyl, propyl, and butyl parabens, they exhibited different plasticity as confirmed by crystal free volume analysis, crystal nano-indentation hardness, and Heckel analysis. Sieved fraction, 150-250 microm, of each paraben powder was compressed into tablets under different conditions. Tablet tensile strength, porosity, and Indices of tableting performance (ITP) were obtained. Under the same compaction pressure, tablet tensile strength was higher for crystals with higher plasticity. Tableting performance, assessed using the ITP, also improved with increasing crystal plasticity. The results confirm that high levels of plasticity, which can result from the presence of slip planes in crystal lattice, plays a critical role in the formation of strong and intact tablets by means of powder compaction.


Asunto(s)
Parabenos/química , Química Farmacéutica , Cristalización , Composición de Medicamentos , Dureza , Pruebas de Dureza , Modelos Químicos , Estructura Molecular , Porosidad , Polvos , Presión , Relación Estructura-Actividad , Comprimidos , Tecnología Farmacéutica/métodos , Resistencia a la Tracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...