Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21
1.
Nanomedicine ; 55: 102723, 2024 Jan.
Article En | MEDLINE | ID: mdl-38007064

OBJECTIVE: Osteoarthritis (OA) is characterized by progressive cartilage degeneration and absence of curative therapies. Therefore, more efficient therapies are compellingly needed. Both mesenchymal stem cells (MSCs)-derived extracellular vesicles (EVs) and Icariin (ICA) are promising for repair of cartilage defect. This study proposes that ICA may be combined to potentiate the cartilage repair capacity of MSC-EVs. MATERIALS AND METHODS: MSC-EVs were isolated from sodium alginate (SA) and hyaluronic acid (HA) composite hydrogel (SA-HA) cell spheroid culture. EVs and ICA were combined in SA-HA hydrogel to test therapeutic efficacy on cartilage defect in vivo. RESULTS: EVs and ICA were synergistic for promoting both proliferation and migration of MSCs and inflammatory chondrocytes. The combination therapy led to strikingly enhanced repair on cartilage defect in rats, with mechanisms involved in the concomitant modulation of both cartilage degradation and synthesis makers. CONCLUSION: The MSC-EVs-ICA/SA-HA hydrogel potentially constitutes a novel therapy for cartilage defect in OA.


Extracellular Vesicles , Mesenchymal Stem Cells , Osteoarthritis , Animals , Rats , Hydrogels/pharmacology , Hyaluronic Acid/pharmacology , Hyaluronic Acid/metabolism , Cartilage , Chondrocytes/metabolism , Osteoarthritis/drug therapy , Regeneration , Extracellular Vesicles/metabolism
2.
Indian J Orthop ; 57(10): 1667-1677, 2023 Oct.
Article En | MEDLINE | ID: mdl-37766962

Objectives: The accurate prediction of osteoarthritis (OA) severity in patients can be helpful to make the proper decision of intervention. This study aims to build up a powerful model to assess predictive risk factors and severity of knee osteoarthritis (KOA) in the clinical scenario. Methods: A total of 4796 KOA cases and 1205 features were selected by feature selections from the public OA database, Osteoarthritis Initiative (OAI). Six machine learning-based models were constructed and compared for the accuracy of OA prediction. The gradient-boosting decision tree was used to identify important prediction features in the extreme gradient boosting (XGBoost) model. The performance of models was evaluated by F1-score. Results: Twenty features were determined as predictors for KOA risk and severity, including the subject characteristics, knee symptoms/risk factors and physical exam. The XGBoost model demonstrated 100% prediction accuracy for 54.7% of examined samples, and the remaining 45.3% of samples showed Kellgren and Lawrence (KL) gradings very close to the actual levels. It showed the highest prediction accuracy with an F1-score of 0.553 among the tested six models. Conclusions: We demonstrate that the XGBoost is the best model for the prediction of KOA severity in the six examined models. In addition, 20 risk features were determined as the essential predictors of KOA, including the physical exam, knee symptoms/risk factors and subject characteristics, which may be useful for the identification of high-risk KOA cases and for making appropriate treatment decisions as well.

3.
ACS Appl Mater Interfaces ; 15(17): 21057-21065, 2023 May 03.
Article En | MEDLINE | ID: mdl-37079896

Photoelectrochemical (PEC) water splitting for hydrogen production using the CdTe photocathode has attracted much interest due to its excellent sunlight absorption property and energy band structure. This work presents a study of engineered interfacial energetics of CdTe photocathodes by deposition of CdS, TiO2, and Ni layers. A heterostructure CdTe/CdS/TiO2/Ni photocathode was fabricated by depositing a 100-nm n-type CdS layer on a p-type CdTe surface, with 50 nm TiO2 as a protective layer and a 10 nm Ni layer as a co-catalyst. The CdTe/CdS/TiO2/Ni photocathode exhibits a high photocurrent density (Jph) of 8.16 mA/cm2 at 0 V versus reversible hydrogen electrode (VRHE) and a positive-shifted onset potential (Eonset) of 0.70 VRHE for PEC hydrogen evolution under 100 mW/cm2 AM1.5G illumination. We further demonstrate that the CdTe/CdS p-n junction promotes the separation of photogenerated carriers, the TiO2 layer protects the electrode from corrosion, and the Ni catalyst improves the charge transfer across the electrode/electrolyte interface. This work provides new insights for designing noble metal-free photocathodes toward solar hydrogen development.

4.
Apoptosis ; 28(7-8): 1060-1075, 2023 08.
Article En | MEDLINE | ID: mdl-37060507

The aberrantly up-regulated CDK9 can be targeted for cancer therapy. The CDK inhibitor dinaciclib (Dina) has been found to drastically sensitizes cancer response to TRAIL-expressing extracellular vesicle (EV-T). However, the low selectivity of Dina has limited its application for cancer. We propose that CDK9-targeted siRNA (siCDK9) may be a good alternative to Dina. The siCDK9 molecules were encapsulated into EV-Ts to prepare a complexed nanodrug (siEV-T). It was shown to efficiently suppress CDK9 expression and overcome TRAIL resistance to induce strikingly augmented apoptosis in lung cancer both in vitro and in vivo, with a mechanism related to suppression of both anti-apoptotic factors and nuclear factor-kappa B pathway. Therefore, siEV-T potentially constitutes a novel, highly effective and safe therapy for cancers.


Lung Neoplasms , NF-kappa B , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Apoptosis , Cell Line, Tumor , RNA, Small Interfering/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , TNF-Related Apoptosis-Inducing Ligand/genetics , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics , Cyclin-Dependent Kinase 9/genetics
5.
ACS Sustain Chem Eng ; 11(5): 1985-1994, 2023 Feb 06.
Article En | MEDLINE | ID: mdl-36778523

Keratin is an important byproduct of the animal industry, but almost all of it ends up in landfills due to a lack of efficient recycling methods. To make better use of keratin-based natural resources, the current extraction and processing strategies need to be improved or replaced by more sustainable and cost-effective processes. Here, we developed a simple and environmentally benign method to process extracted keratin, using HCl to induce the formation of a coacervate, a separate aqueous phase with a very high protein concentration. Remarkably, this pH-induced coacervation did not result in the denaturation of keratin, and we could even observe an increase in the amount of ordered secondary structures. The low-pH coacervates could be extruded and wet-spun into high-performance keratin fibers, without requiring heating or any organic solvents. The secondary structure of keratin was largely conserved in these regenerated fibers, which exhibited excellent mechanical performance. The process developed in this study represents a simple and environmentally friendly strategy to upcycle waste keratin into high-performance materials.

6.
ACS Sustain Chem Eng ; 10(48): 15968-15977, 2022 Dec 05.
Article En | MEDLINE | ID: mdl-36507097

Keratin is one of the most abundant biopolymers, produced on a scale of millions of tons per year but often simply discarded as waste. Due to its abundance, biocompatibility, and excellent mechanical properties, there is an extremely high interest in developing protocols for the recycling of keratin and its conversion into protein-based materials. In this work, we describe a novel protocol for the conversion of keratin from wool into hybrid fibers. Our protocol uses a synthetic polyanion, which undergoes complex coacervation with keratin, leading to a viscous liquid phase that can be used directly as a dope for dry-spinning. The use of polyelectrolyte complexation allows us to use all of the extracted keratin, unlike previous works that were limited to the fraction with the highest molecular weight. The fibers prepared by this protocol show excellent mechanical properties, humidity responsiveness, and ion conductivity, which makes them promising candidates for applications as a strain sensor.

7.
Cancers (Basel) ; 14(14)2022 Jul 21.
Article En | MEDLINE | ID: mdl-35884614

The clinical outcomes of lung cancer remain poor, mainly due to the chemoresistance and low bioavailability of systemically delivered drugs. Therefore, novel therapeutic strategies are urgently needed. The TNF-related apoptosis-inducing ligand (TRAIL)-armed extracellular vesicle (EV-T) has proven to be highly synergistic for the killing of cancer cells with the potent cyclin-dependent kinase (CDK) inhibitor Dinaciclib (Dina). However, both optimal drug formulations and delivery strategies are yet to be established to facilitate the clinical application of the combination of EV-T and Dina. We hypothesize that Dina can be encapsulated into EV-T to produce a complexed formulation, designated EV-T-Dina, which can be nebulized for pulmonary delivery to treat lung cancer with potentially improved efficacy and safety. The prepared EV-T-Dina shows good stability both in vitro and in vivo and is very efficient at killing two highly TRAIL-resistant cancer lines. The ability to overcome TRAIL resistance is associated with the concomitant downregulation of the expression of cFLIP, MCL-1, and Survivin by Dina. The EV-T-Dina solution is nebulized for inhalation, showing unique deposition in animal lungs and importantly it demonstrates a significant suppression of the growth of orthotopic A549 tumors without any detectable adverse side events. In conclusion, the aerosolized EV-T-Dina constitutes a novel therapy, which is highly effective and safe for the treatment of lung cancers.

8.
Apoptosis ; 27(11-12): 812-824, 2022 12.
Article En | MEDLINE | ID: mdl-35802302

Keloid disease is a nodular lesion, tumor-like but not cancerous, and characterized of excessive proliferation of fibroblasts and deposition of extracellular matrix (ECM) components. This condition often causes itching, pain and cosmetic disfigurement, significantly reducing patient quality of life. To date, no universally effective therapies are available, possibly due to inadequate understanding of keloid pathogenesis. As an oral small-molecule inhibitor of certain tyrosine kinase receptors, sunitinib has shown significant therapeutic effects in renal cell carcinoma (RCC) and gastrointestinal stromal tumor (GIST). However, it has never been tested if keloid therapy can be effective for the management of keloids. This study thus aims to explore the potential of sunitinib for keloid treatment. Keloid-derived fibroblasts (KFs) were successfully isolated and demonstrated proliferative advantage to normal skin-derived fibroblasts (NFs). Additionally, sunitinib showed specific cytotoxicity and inhibition of invasion, and induced cell cycle arrest and significant apoptosis in KFs. These effects were accompanied by complete suppression of ECM component expression, including collagen types 1 and 3, upregulation of autophagy-associated LC3B and significant suppression of the Akt/PI3K/mTOR pathway. Moreover, a keloid explant culture model was successfully established and used to test the therapeutic efficacy of sunitinib on keloid formation in nude mice. Sunitinib was found to induce complete regression of keloid explant fragments in nude mice, showing significantly higher therapeutic efficacy than the most commonly used intralesional drug triamcinolone acetonide (TAC). These data suggest that sunitinib effectively inhibits keloid development through suppression of the Akt/PI3K/mTOR pathway and thus can be potentially developed as a monotherapy or combination therapy for the effective treatment of keloid disease.


Keloid , Mice , Animals , Keloid/drug therapy , Keloid/metabolism , Keloid/pathology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Sunitinib/pharmacology , Sunitinib/therapeutic use , Sunitinib/metabolism , Mice, Nude , Quality of Life , Apoptosis , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Fibroblasts/metabolism , Cell Proliferation
9.
Int J Mol Sci ; 23(12)2022 Jun 10.
Article En | MEDLINE | ID: mdl-35742966

Glioblastoma multiforme (GBM) is the most aggressive brain tumor in adults. In addition to genetic causes, the tumor microenvironment (TME), including stiffening of the extracellular matrix (ECM), is a main driver of GBM progression. Mechano-transduction and the unfolded protein response (UPR) are essential for tumor-cell adaptation to harsh TME conditions. Here, we studied the effect of a variable stiff ECM on the morphology and malignant properties of GBM stem cells (GSCs) and, moreover, examined the possible involvement of the UPR sensor PERK herein. For this, stiffness-tunable human blood plasma (HBP)/alginate hydrogels were generated to mimic ECM stiffening. GSCs showed stiffness-dependent adaptation characterized by elongated morphology, increased proliferation, and motility which was accompanied by F-Actin cytoskeletal remodeling. Interestingly, in PERK-deficient GSCs, stiffness adaptation was severely impaired, which was evidenced by low F-Actin levels, the absence of F-Actin remodeling, and decreased cell proliferation and migration. This impairment could be linked with Filamin-A (FLN-A) expression, a known interactor of PERK, which was strongly reduced in PERK-deficient GSCs. In conclusion, we identified a novel PERK/FLNA/F-Actin mechano-adaptive mechanism and found a new function for PERK in the cellular adaptation to ECM stiffening.


Brain Neoplasms , Glioblastoma , Actins/metabolism , Adult , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , Glioblastoma/metabolism , Humans , Tumor Microenvironment , Unfolded Protein Response
10.
J Mol Med (Berl) ; 100(4): 629-643, 2022 04.
Article En | MEDLINE | ID: mdl-35247069

Hepatocellular carcinoma (HCC) is an aggressive malignancy, and its effective treatment has been hampered by drug resistance. Extracellular vesicle (EV) delivery of TNF-related apoptosis-inducing ligand (TRAIL) (EV-T) was demonstrated to be superior to recombinant TRAIL (rTRAIL) for cancer treatment previously. And AZD5582, a potent antagonist of inhibitors of apoptosis proteins (IAPs) can potentiate apoptosis-based cancer therapies. However, the combination of EV-T and AZD5582 has never been examined for their possible apoptosis inducing synergism in cancers. In this study, we proposed and tested the combination of EV-T and AZD5582 as a potential novel therapy for effective treatment of HCC. Two HCC lines Huh7 and HepG2 that are both resistant to rTRAIL were examined. The results confirmed that AZD5582 and EV-T are synergistic for apoptosis induction in some cancer lines including Huh7 and HepG2 while sparing normal cells. More importantly, this study revealed that TRAIL sensitization by AZD5582 is mediated through the concomitant suppression of anti-apoptotic factors including cFLIP, MCL-1, and IAPs (XIAP, Survivin and cIAP-1). Particularly the downregulation of cFLIP and IAP's appeared to be essential and necessary for the synergism between AZD5582 and TRAIL. In vivo, we first time demonstrated that the combined therapy with low doses of AZD5582 and EV-Ts triggered drastically enhanced apoptosis leading to the complete eradication of Huh7 tumor development without any apparent adverse side effects examined. We thus have unraveled the important molecular mechanism underlying TRAIL sensitization by AZD5582, rationalizing the next development of a combination therapy with AZD5582 and EV-T for HCC treatment. KEY MESSAGES: It confirmed the TRAIL sensitization by AZD5582, a potent antagonist of IAPs in hepatocarcinoma. It revealed that the sensitization is via the concomitant suppression of antiapoptotic factors including cFLIP, MCL-1, and IAPs. The downregulation of cFLIP and IAPs like Survivin appeared to be essential and necessary for the synergism between AZD5582 and nanosomal TRAIL. In vivo the combined therapy with AZD5582 and nanosomal TRAIL led to complete eradication of hepatocarcinoma tumors. This study has rationalized the next development of a combination therapy with AZD5582 and nanosomal TRAIL for cancer treatment.


Carcinoma, Hepatocellular , Extracellular Vesicles , Liver Neoplasms , Alkynes , Apoptosis , Apoptosis Regulatory Proteins/metabolism , CASP8 and FADD-Like Apoptosis Regulating Protein/genetics , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , CASP8 and FADD-Like Apoptosis Regulating Protein/pharmacology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Extracellular Vesicles/metabolism , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Oligopeptides , Survivin/metabolism , Survivin/pharmacology , TNF-Related Apoptosis-Inducing Ligand/metabolism , TNF-Related Apoptosis-Inducing Ligand/pharmacology
11.
Biomater Sci ; 10(6): 1498-1514, 2022 Mar 15.
Article En | MEDLINE | ID: mdl-35170591

Extracellular vesicle (EV) delivery of TNF-related apoptosis-inducing ligand (TRAIL) (EV-T) has been shown to be highly efficient for cancer treatment when combined with the potent cyclin-dependent kinase (CDK) inhibitor dinaciclib (SCH727965, Dina). However, only topical administration was previously tested for cancer treatment, leaving unknown the efficacy of systemic therapy by EV-T and Dina. In this study we hypothesize that the systemic application of EV-T and Dina can be performed through EV-mediated co-delivery of TRAIL and Dina. Dina was first post-loaded into EV-Ts by sonication to prepare EV-mediated co-delivery of TRAIL and Dina, designated Dina@EV-T. Then Dina@EV-Ts were shown to be stable, readily endocytosed into cancer cells, and highly effective at inducing intensive apoptosis in resistant cancer lines but not in normal cells. Moreover, systemically infused Dina@EV-Ts showed evident tumor tropism suggesting their good potential for tumour-targeted delivery of therapeutics. Importantly, the systemic therapy with Dina@EV-Ts showed the best efficacy in vivo when compared with other treatments. The augmented therapeutic efficacy appeared to be associated with the concomitant suppression of prosurvival CDK1 and anti-apoptotic proteins including CDK9, cFLIP, MCL-1, BCL-2 and Survivin by Dina@EV-T treatment. Additionally, there were no adverse side effects observed for the systemic Dina@EV-T therapy. In conclusion, our data suggest that the co-delivery of TRAIL and Dina by EVs potentially constitutes a novel tumour-targeted therapy, which is highly effective and safe for the treatment of refractory tumors.


Extracellular Vesicles , Indolizines , Apoptosis , Cell Line, Tumor , Cyclic N-Oxides , Extracellular Vesicles/metabolism , Indolizines/pharmacology , Pyridinium Compounds , TNF-Related Apoptosis-Inducing Ligand/metabolism , TNF-Related Apoptosis-Inducing Ligand/pharmacology
12.
Acta Histochem ; 124(2): 151856, 2022 Feb.
Article En | MEDLINE | ID: mdl-35077998

Neuroblastoma is a metastatic brain tumor particularly common in children. The cure rate is below 50% for patients of high-risk condition. Novel therapeutic agents and approaches are needed to improve the cure rate. Tumor necrosis factor-related and apoptosis-inducing ligand (TRAIL) is a promising proapoptotic factor that rapidly induces apoptosis preferentially in transformed and cancerous cells. Unfortunately, the common TRAIL resistance in cancers has hampered the clinical application of the ligand. Previously we prepared a novel TRAIL-armed ER derived nanosomal agent (ERN-T) that overcomes TRAIL resistance in some cancer lines when combined with a synthetic antagonist of inhibitors of apoptosis proteins (IAPs), AZD5582. However, how AZD5582 sensitizes cancer cells to ERN-T remains not well understood. In this study we continued to test the therapeutic efficacy of the combinatory therapy of ERN-T and AZD5582 on neuroblastoma, aiming to reveal the molecular mechanism underlying the synergism between AZD5582 and ERN-T. The obtained data revealed that ERN-Ts overcame TRAIL resistance and showed significant cytotoxicity on the resistant neuroblastoma line SH-SH5Y when combined with AZD5582 whilst sparing normal cells. The combination of low doses of ERN-Ts and AZD5582 induced intensive apoptosis in SH-SY5Y but not in normal skin fibroblasts (NSFs). Importantly we discovered that TRAIL sensitization in SH-SY5Y was associated with the concomitant downregulation of antiapoptotic factors cFLIP, MCL-1 and IAPs and upregulation of proapoptotic protein BAX and the death receptor 5 (DR5) by the cotreatment of ERN-T and AZD5582. In vivo study demonstrated that the combination of ERN-T and AZD5582 constituted a highly effective and safe therapy for subcutaneous SH-SY5Y xenograft neuroblastoma in nude mice. In conclusion, we identified that the concomitant regulation of both antiapoptotic and proapoptotic factors and DR5 is an essential molecular mechanism for overcoming TRAIL resistance in SH-SY5Y and the combination of ERN-T and AZD5582 potentially constitutes a novel therapeutic strategy, which is highly effective and safe for neuroblastoma.


Neuroblastoma , TNF-Related Apoptosis-Inducing Ligand , Alkynes , Animals , Apoptosis , Cell Line, Tumor , Humans , Mice , Mice, Nude , Neuroblastoma/drug therapy , Neuroblastoma/metabolism , Neuroblastoma/pathology , Oligopeptides , TNF-Related Apoptosis-Inducing Ligand/pharmacology , TNF-Related Apoptosis-Inducing Ligand/therapeutic use
13.
Adv Healthc Mater ; 10(11): e2100030, 2021 06.
Article En | MEDLINE | ID: mdl-33963815

Although mesenchymal stem cells (MSCs) can be engineered to deliver the TNF-related apoptosis-inducing ligand (TRAIL) as an effective anticancer therapy, the clinical application is hampered by the costly manufacturing of therapeutic MSCs. Therefore, it is needed to find an alternative cell-free therapy. In this study, TRAIL-armed endoplasmic reticulum (ER)-derived nanosomes (ERN-T) are successfully prepared with an average size of 70.6 nm in diameter from TRAIL transduced MSCs. It is demonstrated that the ERN-T is significantly more efficient for cancer cell killing than the soluble recombinant TRAIL (rTRAIL). AZD5582 is an antagonist of the inhibitors of apoptosis proteins (IAPs), and its combination with ERN-T induces strikingly enhanced apoptosis in cancerous but not normal cells. AZD5582 sensitizes resistant cancer cells to TRAIL through concomitant downregulation of IAP members like XIAP and the Bcl2 family member Mcl-1. Intravenously infused ERN-Ts accumulate in tumors for over 48 h indicating good tumor tropism and retention. The combination of ERN-T and AZD5582 drastically promotes therapeutic efficacy comparing with the cotreatment by rTRAIL and AZD5582 in a subcutaneous MDA-MB-231 xenograft tumor model. The data thus demonstrate that ERN-T can be a novel cell-free alternative to TRAIL-expressing MSC-based anticancer therapy and its efficacy can be drastically enhanced through combination with AZD5582.


Neoplasms , TNF-Related Apoptosis-Inducing Ligand , Alkynes , Apoptosis , Cell Line, Tumor , Endoplasmic Reticulum , Humans , Oligopeptides
14.
ACS Nano ; 15(3): 5502-5512, 2021 Mar 23.
Article En | MEDLINE | ID: mdl-33605135

Cubic silicon carbide (3C-SiC) is a promising photoelectrode material for solar water splitting due to its relatively small band gap (2.36 eV) and its ideal energy band positions that straddle the water redox potentials. However, despite various coupled oxygen-evolution-reaction (OER) cocatalysts, it commonly exhibits a much smaller photocurrent (<∼1 mA cm-2) than the expected value (8 mA cm-2) from its band gap under AM1.5G 100 mW cm-2 illumination. Here, we show that a short carrier diffusion length with respect to the large light penetration depth in 3C-SiC significantly limits the charge separation, thus resulting in a small photocurrent. To overcome this drawback, this work demonstrates a facile anodization method to fabricate nanoporous 3C-SiC photoanodes coupled with Ni:FeOOH cocatalyst that evidently improve the solar water splitting performance. The optimized nanoporous 3C-SiC shows a high photocurrent density of 2.30 mA cm-2 at 1.23 V versus reversible hydrogen electrode (VRHE) under AM1.5G 100 mW cm-2 illumination, which is 3.3 times higher than that of its planar counterpart (0.69 mA cm-2 at 1.23 VRHE). We further demonstrate that the optimized nanoporous photoanode exhibits an enhanced light-harvesting efficiency (LHE) of over 93%, a high charge-separation efficiency (Φsep) of 38%, and a high charge-injection efficiency (Φox) of 91% for water oxidation at 1.23 VRHE, which are significantly outperforming those its planar counterpart (LHE = 78%, Φsep = 28%, and Φox = 53% at 1.23 VRHE). All of these properties of nanoporous 3C-SiC enable a synergetic enhancement of solar water splitting performance. This work also brings insights into the design of other indirect band gap semiconductors for solar energy conversion.

15.
ACS Appl Mater Interfaces ; 13(4): 5073-5078, 2021 Feb 03.
Article En | MEDLINE | ID: mdl-33480244

The ultimate goal of photocatalytic CO2 reduction is to achieve high selectivity for a single product with high efficiency. One of the most significant challenges is that expensive catalysts prepared through complex processes are usually used. Herein, gram-scale cubic silicon carbide (3C-SiC) nanoparticles are prepared through a top-down ball-milling approach from low-priced 3C-SiC powders. This facile mechanical milling strategy ensures large-scale production of 3C-SiC nanoparticles with an amorphous silicon oxide (SiOx) shell and simultaneously induces abundant surface states. The surface states are demonstrated to trap the photogenerated carriers, thus remarkably enhancing the charge separation, while the thin SiOx shell prevents 3C-SiC from corrosion under visible light. The unique electronic structure of 3C-SiC tackles the challenge associated with low selectivity of photocatalytic CO2 reduction to C1 compounds. In conjugation with efficient water oxidation, 3C-SiC nanoparticles can reduce CO2 into CH4 with selectivity over 90%.

16.
ACS Nano ; 14(4): 4905-4915, 2020 Apr 28.
Article En | MEDLINE | ID: mdl-32243124

Engineering tunable graphene-semiconductor interfaces while simultaneously preserving the superior properties of graphene is critical to graphene-based devices for electronic, optoelectronic, biomedical, and photoelectrochemical applications. Here, we demonstrate this challenge can be surmounted by constructing an interesting atomic Schottky junction via epitaxial growth of high-quality and uniform graphene on cubic SiC (3C-SiC). By tailoring the graphene layers, the junction structure described herein exhibits an atomic-scale tunable Schottky junction with an inherent built-in electric field, making it a perfect prototype to systematically comprehend interfacial electronic properties and transport mechanisms. As a proof-of-concept study, the atomic-scale-tuned Schottky junction is demonstrated to promote both the separation and transport of charge carriers in a typical photoelectrochemical system for solar-to-fuel conversion under low bias. Simultaneously, the as-grown monolayer graphene with an extremely high conductivity protects the surface of 3C-SiC from photocorrosion and energetically delivers charge carriers to the loaded cocatalyst, achieving a synergetic enhancement of the catalytic stability and efficiency.

17.
ACS Appl Mater Interfaces ; 12(6): 7038-7046, 2020 Feb 12.
Article En | MEDLINE | ID: mdl-31967447

A surface-nanostructured semiconductor photoelectrode is highly desirable for photoelectrochemical (PEC) solar-to-fuel production due to its large active surface area, efficient light absorption, and significantly reduced distance for charge transport. Here, we demonstrate a facile approach to fabricate a nanoporous 6H-silicon carbide (6H-SiC) photoanode with a conformal coating of Ni-FeOOH nanorods as a water oxidation cocatalyst. Such a nanoporous photoanode shows significantly enhanced photocurrent density (jph) with a zero-onset potential. A dendritic porous 6H-SiC with densely arranged holes with a size of ∼40 nm on the surface is fabricated by an anodization method, followed by the hydrothermal deposition of FeOOH nanorods and electrodeposition of NiOOH. Under an illumination of AM1.5G 100 mW/cm2, the Ni-FeOOH-coated nanoporous 6H-SiC photoanode exhibits an onset potential of 0 V versus the reversible hydrogen electrode (VRHE) and a high jph of 0.684 mA/cm2 at 1 VRHE, which is 342 times higher than that of the Ni-FeOOH-coated planar 6H-SiC photoanode. Moreover, the nanoporous photoanode shows a maximum applied-bias-photon-to-current efficiency (ABPE) of 0.58% at a very low bias of 0.36 VRHE, distinctly outperforming the planar counterpart. The impedance measurements demonstrate that the nanoporous photoanode possesses a significantly reduced charge-transfer resistance, which explains the dramatically enhanced PEC water-splitting performance. The reported approach here can be widely used to fabricate other nanoporous semiconductors for solar energy conversion.

18.
RSC Adv ; 9(4): 1903-1908, 2019 Jan 14.
Article En | MEDLINE | ID: mdl-35516116

The development of heterojunction structures has been considered as an important step for sensing materials. In this report, 3D hierarchical SnO-SnO2 heterojunction structures were synthesized and developed via simple one-pot hydrothermal synthesis without any extra processes. The prepared 3D samples exhibit high sensitivity, benefiting from the synergistic effects of SnO and SnO2. Interestingly, SnO-SnO2 hybrid structures exhibited distinctly different sensitivities at 180 and 280 °C, and the sensitivity can achieve values of 47.69 and 41.56 toward ethanol and acetone, respectively, at concentrations of 100 ppm. A mechanistic analysis of the sensitivity and concentration-dependence revealed that the oxygen species on the surface were O- and O2- at different temperatures. Therefore, the temperature selectivity of the sample may be due to the different activities of the active oxygen species. Moreover, the composition also shows excellent stability at operating temperatures. The high sensing sensitivity and selectivity is promising for practical VOC gas detection; this also offers a new perspective for the design of multifunctional sensing materials.

19.
Nano Lett ; 18(9): 5862-5866, 2018 09 12.
Article En | MEDLINE | ID: mdl-30136852

The stacking order of multilayer graphene significantly influences its electronic properties. The rhombohedral stacking sequence is predicted to introduce a flat band, which has high density of states and the enhanced Coulomb interaction between charge carriers, thus possibly resulting in superconductivity, fractional quantum Hall effect, and many other exotic phases of matter. In this work, we comprehensively study the effect of the stacking sequence and interlayer spacing on the electronic structure of four-layer graphene, which was grown on a high crystalline quality 3C-SiC(111) crystal. The number of graphene layers and coverage were determined by low energy electron microscopy. First-principles density functional theory calculations show distinctively different band structures for ABAB (Bernal), ABCA (rhombohedral), and ABCB (turbostratic) stacking sequences. By comparing with angle-resolved photoelectron spectroscopy data, we can verify the existence of a rhombohedral stacking sequence and a nearly dispersionless electronic band (flat band) near the Fermi level. Moreover, we find that the momentum width, bandgap, and curvature of the flat-band region can be tuned by the interlayer spacing, which plays an important role in superconductivity and many other exotic phases of matter.

20.
RSC Adv ; 8(58): 33080-33086, 2018 Sep 24.
Article En | MEDLINE | ID: mdl-35548128

The influence of Ni doping in SnO2 microspheres was investigated in this study. SnO2 was doped with different amounts of Ni using a simple dipping method. The doped SnO2 structure, which was confirmed from X-ray photoelectron (XPS) and photoluminescence (PL) spectroscopies, was shown to possess distinctly more oxygen vacancies. Oxygen vacancies were found to be responsible for the surface adsorption of oxygen, as shown in the O 1s XPS spectrum and O2-TPD (temperature programmed desorption) measurements which can enhance the sensitivity of materials. According to the gas sensing properties, Ni-doped SnO2 was enhanced towards ethanol and showed excellent stability at the operating temperature. At 1 ppm of ethanol vapor, the response value of Ni substituted SnO2 was about 3 times that of pristine SnO2 microspheres. This research reveals a notable perspective for the design of sensing materials in terms of Ni substitutional doping.

...