Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Cell Rep ; 43(4): 114092, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38607913

Macrophages conduct critical roles in heart repair, but the niche required to nurture and anchor them is poorly studied. Here, we investigated the macrophage niche in the regenerating heart. We analyzed cell-cell interactions through published single-cell RNA sequencing datasets and identified a strong interaction between fibroblast/epicardial (Fb/Epi) cells and macrophages. We further visualized the association of macrophages with Fb/Epi cells and the blockage of macrophage response without Fb/Epi cells in the regenerating zebrafish heart. Moreover, we found that ptx3a+ epicardial cells associate with reparative macrophages, and their depletion resulted in fewer reparative macrophages. Further, we identified csf1a expression in ptx3a+ cells and determined that pharmacological inhibition of the csf1a pathway or csf1a knockout blocked the reparative macrophage response. Moreover, we found that genetic overexpression of csf1a enhanced the reparative macrophage response with or without heart injury. Altogether, our studies illuminate a cardiac Fb/Epi niche, which mediates a beneficial macrophage response after heart injury.


Fibroblasts , Heart , Macrophages , Regeneration , Zebrafish , Animals , C-Reactive Protein/metabolism , C-Reactive Protein/genetics , Fibroblasts/metabolism , Heart/physiology , Heart Injuries/metabolism , Heart Injuries/pathology , Macrophages/metabolism , Pericardium/metabolism , Pericardium/cytology , Regeneration/physiology , Serum Amyloid P-Component/metabolism , Serum Amyloid P-Component/genetics , Zebrafish/metabolism , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics
2.
Dev Biol ; 508: 93-106, 2024 Apr.
Article En | MEDLINE | ID: mdl-38286185

Despite extensive studies on endogenous heart regeneration within the past 20 years, the players involved in initiating early regeneration events are far from clear. Here, we assessed the function of neutrophils, the first-responder cells to tissue damage, during zebrafish heart regeneration. We detected rapid neutrophil mobilization to the injury site after ventricular amputation, peaking at 1-day post-amputation (dpa) and resolving by 3 dpa. Further analyses indicated neutrophil mobilization coincides with peak epicardial cell proliferation, and recruited neutrophils associated with activated, expanding epicardial cells at 1 dpa. Neutrophil depletion inhibited myocardial regeneration and significantly reduced epicardial cell expansion, proliferation, and activation. To explore the molecular mechanism of neutrophils on the epicardial regenerative response, we performed scRNA-seq analysis of 1 dpa neutrophils and identified enrichment of the FGF and MAPK/ERK signaling pathways. Pharmacological inhibition of FGF signaling indicated its' requirement for epicardial expansion, while neutrophil depletion blocked MAPK/ERK signaling activation in epicardial cells. Ligand-receptor analysis indicated the EGF ligand, hbegfa, is released from neutrophils and synergizes with other FGF and MAPK/ERK factors for induction of epicardial regeneration. Altogether, our studies revealed that neutrophils quickly motivate epicardial cells, which later accumulate at the injury site and contribute to heart regeneration.


Heart Injuries , Zebrafish , Animals , Zebrafish/metabolism , Neutrophils , Pericardium/physiology , Ligands , Heart/physiology , Cell Proliferation
3.
Chem Biodivers ; 21(2): e202301366, 2024 Feb.
Article En | MEDLINE | ID: mdl-38073179

The interaction mechanism between trypsin and fulvic acid was analyzed by multispectral method and molecular docking simulation. The fluorescence spectra showed that fulvic acid induced static quenching of trypsin. The validity of this conclusion was further substantiated through the computation of the binding constants. The thermodynamic parameters show that the reaction is mainly controlled by van der Waals force and hydrogen bond force, and the reaction is spontaneous. In addition, based on the obtained binding distance, there may be a non-radiative energy transfer between the two. The ultraviolet spectrum showed that fulvic acid could shift the absorption peak of trypsin, indicating that fulvic acid had an effect on the secondary structure of trypsin. According to the synchronous fluorescence spectrum results, fulvic acid primarily interacts with tryptophan residues in trypsin and induces alterations in their microenvironment. Three-dimensional fluorescence spectrum and circular dichroism further proves this conclusion. The molecular docking simulation reveals that the interaction between the two groups primarily arises from hydrogen bonding and van der Waals forces. The findings suggest that FA has the ability to induce conformational changes in trypsin's secondary structure.


Benzopyrans , Molecular Docking Simulation , Trypsin/chemistry , Trypsin/metabolism , Protein Binding , Circular Dichroism , Thermodynamics , Spectrometry, Fluorescence , Binding Sites , Hydrogen Bonding
4.
Chem Biodivers ; 21(2): e202301554, 2024 Feb.
Article En | MEDLINE | ID: mdl-38128109

The interaction between chloramphenicol (CHL) and pepsin (PEP), as well as the impact of CHL on PEP conformation, were investigated using spectroscopic techniques and molecular docking simulations in this study. The experimental results demonstrate that CHL exhibits a static quenching effect on PEP. The thermodynamic parameters indicate that the reaction between CHL and PEP is spontaneous, primarily driven by hydrogen bonding and van der Waals forces. Moreover, the binding distance of r<7 nm suggests the occurrence of Förster's non-radiative energy transfer between these two molecules. In the synchronous fluorescence spectrum, the maximum fluorescence intensity of PEP produced a redshift phenomenon, indicating that CHL was bound to tryptophan residues of PEP. The addition of CHL induces changes in the secondary structure of PEP, as confirmed by the observed alterations in peak values in three-dimensional fluorescence spectra. The UV spectra reveal a redshift of 3 nm in the maximum absorption peak, indicating a conformational change in the secondary structure of PEP upon addition of CHL. Circular dichroism analysis demonstrates significant alterations in the α-helix, ß-sheet, ß-turn, and random coil contents of PEP before and after CHL incorporation, further confirming its ability to modulate the secondary structure of PEP.


Anti-Bacterial Agents , Chloramphenicol , Anti-Bacterial Agents/pharmacology , Chloramphenicol/pharmacology , Spectrometry, Fluorescence , Pepsin A/chemistry , Pepsin A/metabolism , Molecular Docking Simulation , Thermodynamics , Circular Dichroism , Binding Sites , Protein Binding
5.
Nat Commun ; 14(1): 3505, 2023 06 13.
Article En | MEDLINE | ID: mdl-37311876

Although several tissues and chemokines orchestrate coronary formation, the guidance cues for coronary growth remain unclear. Here, we profile the juvenile zebrafish epicardium during coronary vascularization and identify hapln1a+ cells enriched with vascular-regulating genes. hapln1a+ cells not only envelop vessels but also form linear structures ahead of coronary sprouts. Live-imaging demonstrates that coronary growth occurs along these pre-formed structures, with depletion of hapln1a+ cells blocking this growth. hapln1a+ cells also pre-lead coronary sprouts during regeneration and hapln1a+ cell loss inhibits revascularization. Further, we identify serpine1 expression in hapln1a+ cells adjacent to coronary sprouts, and serpine1 inhibition blocks vascularization and revascularization. Moreover, we observe the hapln1a substrate, hyaluronan, forming linear structures along and preceding coronary vessels. Depletion of hapln1a+ cells or serpine1 activity inhibition disrupts hyaluronan structure. Our studies reveal that hapln1a+ cells and serpine1 are required for coronary production by establishing a microenvironment to facilitate guided coronary growth.


Hyaluronic Acid , Zebrafish , Animals , Heart , Coronary Vessels , Neovascularization, Pathologic , Morphogenesis/genetics
6.
Molecules ; 28(6)2023 Mar 15.
Article En | MEDLINE | ID: mdl-36985629

In the current study, the interaction of minocycline hydrochloride (MC) and trypsin (TRP) was studied using fluorescence spectroscopy, synchronous fluorescence spectroscopy, three-dimensional fluorescence spectroscopy, UV-Vis spectroscopy, and molecular docking simulation techniques. The results show that the fluorescence quenching of trypsin at different degrees can be caused by minocycline hydrochloride at different temperatures. According to the Stern-Volmer equation, the fluorescence quenching type was static quenching. By calculating critical distance, we concluded that there is a possibility of non-radiative energy transfer between minocycline hydrochloride and trypsin. The effect of minocycline hydrochloride on the secondary structure of trypsin was demonstrated using ultraviolet spectroscopy. Synchronous fluorescence spectroscopy showed that minocycline hydrochloride could bind to tryptophan residues in trypsin, resulting in corresponding changes in the secondary structure of trypsin. Three-dimensional fluorescence spectroscopy showed that minocycline hydrochloride had a particular effect on the microenvironment of trypsin that led to changes in the secondary structure of trypsin. The molecular docking technique demonstrated that the binding of minocycline hydrochloride and trypsin was stable. Circular dichroism showed that the secondary structure of trypsin could be changed by minocycline hydrochloride.


Minocycline , Molecular Docking Simulation , Trypsin/chemistry , Protein Binding , Spectrophotometry, Ultraviolet , Thermodynamics , Circular Dichroism , Spectrometry, Fluorescence , Binding Sites
7.
Circulation ; 146(1): 48-63, 2022 07 05.
Article En | MEDLINE | ID: mdl-35652354

BACKGROUND: Certain nonmammalian species such as zebrafish have an elevated capacity for innate heart regeneration. Understanding how heart regeneration occurs in these contexts can help illuminate cellular and molecular events that can be targets for heart failure prevention or treatment. The epicardium, a mesothelial tissue layer that encompasses the heart, is a dynamic structure that is essential for cardiac regeneration in zebrafish. The extent to which different cell subpopulations or states facilitate heart regeneration requires research attention. METHODS: To dissect epicardial cell states and associated proregenerative functions, we performed single-cell RNA sequencing and identified 7 epicardial cell clusters in adult zebrafish, 3 of which displayed enhanced cell numbers during regeneration. We identified paralogs of hapln1 as factors associated with the extracellular matrix and largely expressed in cluster 1. We assessed HAPLN1 expression in published single-cell RNA sequencing data sets from different stages and injury states of murine and human hearts, and we performed molecular genetics to determine the requirements for hapln1-expressing cells and functions of each hapln1 paralog. RESULTS: A particular cluster of epicardial cells had the strongest association with regeneration and was marked by expression of hapln1a and hapln1b. The hapln1 paralogs are expressed in epicardial cells that enclose dedifferentiated and proliferating cardiomyocytes during regeneration. Induced genetic depletion of hapln1-expressing cells or genetic inactivation of hapln1b altered deposition of the key extracellular matrix component hyaluronic acid, disrupted cardiomyocyte proliferation, and inhibited heart regeneration. We also found that hapln1-expressing epicardial cells first emerge at the juvenile stage, when they associate with and are required for focused cardiomyocyte expansion events that direct maturation of the ventricular wall. CONCLUSIONS: Our findings identify a subset of epicardial cells that emerge in postembryonic zebrafish and sponsor regions of active cardiomyogenesis during cardiac growth and regeneration. We provide evidence that, as the heart achieves its mature structure, these cells facilitate hyaluronic acid deposition to support formation of the compact muscle layer of the ventricle. They are also required, along with the function of hapln1b paralog, in the production and organization of hyaluronic acid-containing matrix in cardiac injury sites, enabling normal cardiomyocyte proliferation and muscle regeneration.


Extracellular Matrix Proteins , Heart , Myocytes, Cardiac , Proteoglycans , Animals , Cell Proliferation , Extracellular Matrix Proteins/metabolism , Heart/physiology , Humans , Hyaluronic Acid/metabolism , Mice , Myocytes, Cardiac/metabolism , Organogenesis , Proteoglycans/metabolism , Regeneration/physiology , Zebrafish/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
8.
Dev Biol ; 487: 57-66, 2022 07.
Article En | MEDLINE | ID: mdl-35490764

Over the past 20 years, various zebrafish injury models demonstrated efficient heart regeneration after cardiac tissue loss. However, no established coronary vessel injury methods exist in the zebrafish model, despite coronary endothelial dysfunction occurring in most patients with acute coronary syndrome. This is due to difficulties performing surgery on small coronary vessels and a lack of genetic tools to precisely manipulate coronary cells in zebrafish. We determined that the Notch ligand gene deltaC regulatory sequences drive gene expression in zebrafish coronary endothelial cells, enabling us to overcome these obstacles. We created a deltaC fluorescent reporter line and visualized robust coronary growth during heart development and regeneration. Importantly, this reporter facilitated the visualization of coronary growth without an endocardial background. Moreover, we visualized robust coronary growth on the surface of juvenile hearts and regrowth in the wounded area of adult hearts ex vivo. With this approach, we observed growth inhibition by reported vascular growth antagonists of the VEGF, EGF and Notch signaling pathways. Furthermore, we established a coronary genetic ablation system and observed that severe coronary endothelial cell loss resulted in fish death, whereas fish survived mild coronary cell loss. Coronary cell depletion triggered regenerative responses, which resulted in the restoration of damaged cardiac tissues within several weeks. Overall, our work demonstrated the efficacy of using deltaC regulatory elements for high-resolution visualization of the coronary endothelium; screening small molecules for coronary growth effects; and revealed complete recovery in adult zebrafish after coronary-induced heart damage.


Heart Injuries , Zebrafish , Animals , Cell Proliferation , Endothelial Cells/metabolism , Heart/physiology , Heart Injuries/metabolism , Humans , Myocytes, Cardiac/metabolism , Zebrafish/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
9.
J Cardiovasc Dev Dis ; 9(2)2022 Feb 21.
Article En | MEDLINE | ID: mdl-35200716

Innate and adaptive leukocytes rapidly mobilize to ischemic tissues after myocardial infarction in response to damage signals released from necrotic cells. Leukocytes play important roles in cardiac repair and regeneration such as inflammation initiation and resolution; the removal of dead cells and debris; the deposition of the extracellular matrix and granulation tissue; supporting angiogenesis and cardiomyocyte proliferation; and fibrotic scar generation and resolution. By organizing and comparing the present knowledge of leukocyte recruitment and function after cardiac injury in non-regenerative to regenerative systems, we propose that the leukocyte response to cardiac injury differs in non-regenerative adult mammals such as humans and mice in comparison to cardiac regenerative models such as neonatal mice and adult zebrafish. Specifically, extensive neutrophil, macrophage, and T-cell persistence contributes to a lengthy inflammatory period in non-regenerative systems for adverse cardiac remodeling and heart failure development, whereas their quick removal supports inflammation resolution in regenerative systems for new contractile tissue formation and coronary revascularization. Surprisingly, other leukocytes have not been examined in regenerative model systems. With this review, we aim to encourage the development of improved immune cell markers and tools in cardiac regenerative models for the identification of new immune targets in non-regenerative systems to develop new therapies.

10.
Cell ; 152(1-2): 304-15, 2013 Jan 17.
Article En | MEDLINE | ID: mdl-23332762

The IκB kinase complex (IKK) is a key regulator of immune responses, inflammation, cell survival, and tumorigenesis. The prosurvival function of IKK centers on activation of the transcription factor NF-κB, whose target gene products inhibit caspases and prevent prolonged JNK activation. Here, we report that inactivation of the BH3-only protein BAD by IKK independently of NF-κB activation suppresses TNFα-induced apoptosis. TNFα-treated Ikkß(-/-) mouse embryonic fibroblasts (MEFs) undergo apoptosis significantly faster than MEFs deficient in both RelA and cRel due to lack of inhibition of BAD by IKK. IKK phosphorylates BAD at serine-26 (Ser26) and primes it for inactivation. Elimination of Ser26 phosphorylation promotes BAD proapoptotic activity, thereby accelerating TNFα-induced apoptosis in cultured cells and increasing mortality in animals. Our results reveal that IKK inhibits TNFα-induced apoptosis through two distinct but cooperative mechanisms: activation of the survival factor NF-κB and inactivation of the proapoptotic BH3-only BAD protein.


Apoptosis , I-kappa B Kinase/metabolism , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , bcl-Associated Death Protein/metabolism , Animals , Fibroblasts/cytology , I-kappa B Kinase/genetics , Mice , Mice, Knockout , Phosphorylation , Serine/metabolism , bcl-Associated Death Protein/chemistry , bcl-Associated Death Protein/genetics , bcl-X Protein/metabolism
...