Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Int J Cardiol ; 401: 131817, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38307422

RESUMEN

BACKGROUND: High-altitude exposure changes the electrical conduction of the heart. However, reports on electrocardiogram (ECG) characteristics and potent prophylactic agents during high-altitude acclimatization and de-acclimatization are inadequate. This study aimed to investigate the effects of ubiquinol on electrophysiology after high-altitude hypoxia and reoxygenation. METHODS: The study was a prospective, randomized, double-blind, placebo-controlled trial. Forty-one participants were randomly divided into two groups receiving ubiquinol 200 mg daily or placebo orally 14 days before flying to high altitude (3900 m) until the end of the study. Cardiopulmonary exercise testing was performed at baseline (300 m), on the third day after reaching high altitude, and on the seventh day after returning to baseline. RESULTS: Acute high-altitude exposure prolonged resting ventricular repolarization, represented by increased corrected QT interval (455.9 ± 23.4 vs. 427.1 ± 19.1 ms, P < 0.001) and corrected Tpeak-Tend interval (155.5 ± 27.4 vs. 125.3 ± 21.1 ms, P < 0.001), which recovered after returning to low altitude. Ubiquinol supplementation shortened the hypoxia-induced extended Tpeak-Tend interval (-7.7 ms, [95% confidence interval (CI), -13.8 to -1.6], P = 0.014), Tpeak-Tend /QT interval (-0.014 [95% CI, -0.027 to -0.002], P = 0.028), and reserved maximal heart rate (11.9 bpm [95% CI, 3.2 to 20.6], P = 0.013) during exercise at high altitude. Furthermore, the decreased resting amplitude of the ST-segment in the V3 lead was correlated with decreased peak oxygen pulse (R = 0.713, P < 0.001) and maximum oxygen consumption (R = 0.595, P < 0.001). CONCLUSIONS: Our results illustrated the electrophysiology changes during high-altitude acclimatization and de-acclimatization. Similarly, ubiquinol supplementation shortened the prolonged Tpeak-Tend interval and reserved maximal heart rate during exercise at high altitude. REGISTRATION: URL: www.chictr.org.cn; Unique identifier: ChiCTR2200059900.


Asunto(s)
Altitud , Capacidad Cardiovascular , Ubiquinona/análogos & derivados , Humanos , Estudios Prospectivos , Hipoxia , Aclimatación , Electrofisiología
2.
Curr Cancer Drug Targets ; 24(2): 167-177, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37282642

RESUMEN

BACKGROUND: BRD4 is a member of the bromodomain and extra terminal domain (BET) family of proteins, containing two bromodomains and one extra terminal domain, and is overexpressed in several human malignancies. However, its expression in gastric cancer has not yet been well illustrated. OBJECTIVE: This study aimed to elucidate the overexpression of BRD4 in gastric cancer and its clinical significance as a novel therapeutic target. METHODS: Fresh gastric cancer tissues and paraffin-embedded specimens of gastric cancer patients were collected, and the BRD4 expression was examined by Western Blot Analysis (WB) and Immunohistochemistry Analysis (IHC), respectively. The possible relationship between BRD4 expression and the clinicopathological features as well as survival in gastric cancer patients was analyzed. The effect of BRD4 silencing on human gastric cancer cell lines was investigated by MTT assay, WB, wound healing assay, and Transwell invasion. RESULTS: The results showed that the expression level in tumor tissues and adjacent tissues was significantly higher than that in normal tissues, respectively (P < 0.01). BRD4 expression level in gastric cancer tissues was strongly correlated with the degree of tumor differentiated degree (P = 0.033), regional lymph nodes metastasis (P = 0.038), clinical staging (P = 0.002), and survival situation (P = 0.000), while the gender (P = 0.564), age (P = 0.926) and infiltrating depth (P = 0.619) of patients were not associated. Increased BRD4 expression resulted in poor overall survival (P = 0.003). In in vitro assays, BRD4 small interfering RNA resulted in significantly decreased BRD4 protein expression, therefore inhibiting proliferation, migration, and invasion of gastric cancer cells. CONCLUSION: BRD4 might be a novel biomarker for the early diagnosis, prognosis, and therapeutic target in gastric cancer.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Relevancia Clínica , Línea Celular Tumoral , Proliferación Celular , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pronóstico , Regulación Neoplásica de la Expresión Génica , Movimiento Celular , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
3.
Phytother Res ; 37(12): 5958-5973, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37776121

RESUMEN

Disturbances in lipid metabolism and dysbiosis of the gut microbiota play an important role in the progression of hyperlipidemia. Previous study indicated that Ilicis Rotundae Cortex possesses anti-hyperlipidemic activity, and rotundic acid (RA) identified as a key active compound to be incorporated into the body. The study aimed to evaluate the anti-hyperlipidemia effects of RA and explored its impact on gut microbiota and lipid metabolism, as well as its possible mechanisms for improving hyperlipidemia. The study methodology included a comprehensive evaluation of the effects of RA on steatosis markers of hyperlipidemia, lipid metabolism, and gut microbiota by assessing biochemical parameters and histopathology, lipidomics, 16S rRNA gene sequencing, and short-chain fatty acid (SCFA) assays. The results showed that RA effectively reduced body weight and the steatosis markers in serum and liver. Moreover, the lipidomic analysis revealed significant changes in plasmatic and hepatic lipid levels, and these were restored by RA. According to the results of 16S rRNA gene sequencing, RA supplementation raised the relative abundance of Bacteroidetes and Proteobacteria while decreasing the relative abundance of Firmicutes. RA significantly boosted the relative abundance of SCFAs by increasing SCFAs-producing bacteria such as Bacteroides, Alloprevotella, Desulfovibrio, etc. In summary, RA could regulate triglyceride metabolism and glycerophospholipid metabolism, restore gut microbiota structure, and increase the relative abundance of SCFAs-producing bacteria to exert its hypolipidemic effects. These findings suggest RA to be a promising therapeutic agent for hyperlipidemia.


Asunto(s)
Microbioma Gastrointestinal , Hiperlipidemias , Ratas , Animales , Metabolismo de los Lípidos , Hiperlipidemias/tratamiento farmacológico , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Bacterias
4.
Front Cardiovasc Med ; 10: 1129144, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37560117

RESUMEN

Cardiorespiratory function influences exercise capacity and is an important determinant of high-altitude adaptation. Some studies have investigated the characteristics of changes in cardiorespiratory fitness during high-altitude acclimatization. However, studies on changes in cardiorespiratory fitness during high-altitude de-acclimatization are still lacking and have not yet been elucidated. Furthermore, few drugs have been studied to improve cardiorespiratory function during both processes. The Shigatse CARdiorespiratory Fitness (SCARF) study is a single-center, randomized, double-blind, placebo-control clinical trial to explore the effects of ubiquinol on cardiorespiratory fitness during high-altitude acclimatization and de-acclimatization in healthy adults. Participants will be randomly assigned 1:1 to ubiquinol 200 mg daily or a placebo for 14 days before departure until the end of data collection after return in 7 days. Cardiorespiratory fitness is the primary outcome, while acute mountain sickness and high-altitude de-acclimatization symptoms are secondary endpoints. In addition, laboratory measurements, including routine blood tests and serological measurements, will be performed. To the best of our knowledge, the SCARF study will be the first to reveal the changes in the cardiorespiratory fitness characteristics during high-altitude acclimatization and de-acclimatization. Furthermore, the results of this study will contribute to exploring whether ubiquinol supplementation could be beneficial for endurance exercise capacity at different altitudes and help improve adaptation to acute hypoxia and de-acclimatization. Clinical Trial Registration: This study has been registered in the Chinese Clinical Trial Register (www.chictr.org.cn) as ChiCTR2200059900 and ChiCTR2200066328.

5.
JMIR Mhealth Uhealth ; 11: e43340, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37410528

RESUMEN

BACKGROUND: Cardiorespiratory fitness plays an important role in coping with hypoxic stress at high altitudes. However, the association of cardiorespiratory fitness with the development of acute mountain sickness (AMS) has not yet been evaluated. Wearable technology devices provide a feasible assessment of cardiorespiratory fitness, which is quantifiable as maximum oxygen consumption (VO2max) and may contribute to AMS prediction. OBJECTIVE: We aimed to determine the validity of VO2max estimated by the smartwatch test (SWT), which can be self-administered, in order to overcome the limitations of clinical VO2max measurements. We also aimed to evaluate the performance of a VO2max-SWT-based model in predicting susceptibility to AMS. METHODS: Both SWT and cardiopulmonary exercise test (CPET) were performed for VO2max measurements in 46 healthy participants at low altitude (300 m) and in 41 of them at high altitude (3900 m). The characteristics of the red blood cells and hemoglobin levels in all the participants were analyzed by routine blood examination before the exercise tests. The Bland-Altman method was used for bias and precision assessment. Multivariate logistic regression was performed to analyze the correlation between AMS and the candidate variables. A receiver operating characteristic curve was used to evaluate the efficacy of VO2max in predicting AMS. RESULTS: VO2max decreased after acute high altitude exposure, as measured by CPET (25.20 [SD 6.46] vs 30.17 [SD 5.01] at low altitude; P<.001) and SWT (26.17 [SD 6.71] vs 31.28 [SD 5.17] at low altitude; P<.001). Both at low and high altitudes, VO2max was slightly overestimated by SWT but had considerable accuracy as the mean absolute percentage error (<7%) and mean absolute error (<2 mL·kg-1·min-1), with a relatively small bias compared with VO2max-CPET. Twenty of the 46 participants developed AMS at 3900 m, and their VO2max was significantly lower than that of those without AMS (CPET: 27.80 [SD 4.55] vs 32.00 [SD 4.64], respectively; P=.004; SWT: 28.00 [IQR 25.25-32.00] vs 32.00 [IQR 30.00-37.00], respectively; P=.001). VO2max-CPET, VO2max-SWT, and red blood cell distribution width-coefficient of variation (RDW-CV) were found to be independent predictors of AMS. To increase the prediction accuracy, we used combination models. The combination of VO2max-SWT and RDW-CV showed the largest area under the curve for all parameters and models, which increased the area under the curve from 0.785 for VO2max-SWT alone to 0.839. CONCLUSIONS: Our study demonstrates that the smartwatch device can be a feasible approach for estimating VO2max. In both low and high altitudes, VO2max-SWT showed a systematic bias toward a calibration point, slightly overestimating the proper VO2max when investigated in healthy participants. The SWT-based VO2max at low altitude is an effective indicator of AMS and helps to better identify susceptible individuals following acute high-altitude exposure, particularly by combining the RDW-CV at low altitude. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR2200059900; https://www.chictr.org.cn/showproj.html?proj=170253.


Asunto(s)
Mal de Altura , Humanos , Enfermedad Aguda , Altitud , Mal de Altura/diagnóstico , Prueba de Esfuerzo , Consumo de Oxígeno
6.
Clin Transl Med ; 13(6): e1297, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37278111

RESUMEN

BACKGROUND: Atrial fibrillation (AF) is associated with an increased risk of thrombosis of the left atrial appendage (LAA). However, the molecular mechanisms underlying this site-specificity remain poorly understood. Here, we present a comparative single-cell transcriptional profile of paired atrial appendages from patients with AF and illustrate the chamber-specific properties of the main cell types. METHODS: Single-cell RNA sequencing analysis of matched atrial appendage samples from three patients with persistent AF was evaluated by 10× genomics. The AF mice model was created using Tbx5 knockout mice. Validation experiments were performed by glutathione S-transferase pull-down assays, coimmunoprecipitation (Co-IP), cleavage assays and shear stress experiments in vitro. RESULTS: In LAA, phenotype switching from endothelial cells to fibroblasts and inflammation associated with proinflammatory macrophage infiltration were observed. Importantly, the coagulation cascade is highly enriched in LAA endocardial endothelial cells (EECs), accompanying the up-regulation of a disintegrin and metalloproteinase with thrombospondin motifs 1 (ADAMTS1) and the down-regulation of the tissue factor pathway inhibitor (TFPI) and TFPI2. Similar alterations were verified in an AF mouse model (Tbx5+/- ) and EECs treated with simulated AF shear stress in vitro. Furthermore, we revealed that the cleavage of both TFPI and TFPI2 based on their interaction with ADAMTS1 would lead to loss of anticoagulant activities of EECs. CONCLUSIONS: This study highlights the decrease in the anticoagulant status of EECs in LAA as a potential mechanism underlying the propensity for thrombosis, which may aid the development of anticoagulation therapeutic approaches targeting functionally distinct cell subsets or molecules during AF.


Asunto(s)
Apéndice Atrial , Fibrilación Atrial , Trombosis , Animales , Ratones , Fibrilación Atrial/genética , Fibrilación Atrial/complicaciones , Apéndice Atrial/metabolismo , Células Endoteliales/metabolismo , Trombosis/genética , Anticoagulantes/metabolismo , Análisis de Secuencia de ARN
7.
J Agric Food Chem ; 71(21): 8038-8049, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37196215

RESUMEN

Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is an essential regulatory target of antioxidants, but the lack of Nrf2 active site information has hindered discovery of new Nrf2 agonists from food-derived compounds by large-scale virtual screening. Two deep-learning models were separately trained to screen for Nrf2-agonists and safety. The trained models screened potentially active chemicals from approximately 70,000 dietary compounds within 5 min. Of the 169 potential Nrf2 agonists identified via deep-learning screening, 137 had not been reported before. Six compounds selected from the new Nrf2 agonists significantly increased (p < 0.05) the activity of Nrf2 on carbon tetrachloride (CCl4)-intoxicated HepG2 cells (nicotiflorin (99.44 ± 18.5%), artemetin (97.91 ± 8.22%), daidzin (87.73 ± 3.77%), linonin (74.27 ± 5.73%), sinensetin (72.74 ± 10.41%), and tectoridin (77.78 ± 4.80%)), and their safety were demonstrated by an MTT assay. The safety and Nrf2 agonistic activity of nicotiflorin, artemetin, and daidzin were also reconfirm by a single-dose acute oral toxicity study and CCl4-intoxicated rat assay.


Asunto(s)
Aprendizaje Profundo , Factor 2 Relacionado con NF-E2 , Ratas , Animales , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Antioxidantes/química , Dieta , Tetracloruro de Carbono/metabolismo , Estrés Oxidativo , Hígado/metabolismo
8.
Chem Biodivers ; 20(4): e202200523, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36941224

RESUMEN

Chamomile essential oil (CEO) is extracted from chamomile and mainly used in aromatherapy. The chemical constituents and its antitumor activity on Triple-negative breast cancer (TNBC) was explored in the present study. Gas chromatography-mass spectrometry (GC/MS) was employed to analyze the chemical constituents of CEO. The cell viability, migration and invasion of TNBC cell MDA-MB-231 were measured using MTT, wound scratch and Transwell assay, respectively. The protein expression of PI3K/Akt/mTOR signaling pathway was determined by Western blot. CEO is rich in terpenoids (63.51 %), among which the identified terpenoids and their derivatives are mainly Caryophyllene (29.57 %), d-Cadinene (12.81 %), Caryophyllene oxide (14.51 %), etc. Three concentration of CEO (1, 1.5, 2 µg/mL) significantly inhibited the proliferation, migration and invasion of MDA-MB-231 cells with a dose dependent manner. Moreover, the phosphorylation of PI3K, Akt and mTOR was inhibited by CEO. The results revealed that there was abundant terpenoids in the CEO which account for 63.51 %. CEO significantly inhibited the proliferation, migration and invasion of MDA-MB-231 cells, exhibiting antitumor effect on TNBC. The antitumor effect of CEO might attribute to its inhibition on PI3K/Akt/mTOR signaling pathway. However, further study should be conducted in more TNBC cell lines and animal models to provide further evidence for TNBC treatment by CEO.


Asunto(s)
Aceites Volátiles , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Células MDA-MB-231 , Aceites Volátiles/farmacología , Aceites Volátiles/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Manzanilla/metabolismo , Línea Celular Tumoral , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Terpenos/farmacología , Proliferación Celular
9.
iScience ; 26(4): 106328, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36968068

RESUMEN

Hypobaric hypoxia (HH) is the primary challenge at highland. Prolonged HH exposure impairs right cardiac function. Mitochondria-associated membrane (MAM) plays a principal role in regulating mitochondrial function under hypoxia, but the mechanism was unclear. In this study, proteomics analysis identified that PACS2, a key protein in MAM, and mitophagy were downregulated in HH. Metabolomics analysis indicated suppression of glucose and fatty acids aerobic oxidation in HH conditions. Cardiomyocyte Pacs2 deficiency disrupted MAM formation and endoplasmic reticulum (ER)-mitochondria calcium flux, further inhibiting mitophagy and energy metabolism in HH. Pacs2 overexpression reversed these effects. Cardiac-specific knockout of Pacs2 exacerbated mitophagy inhibition, cardiomyocyte injury, and right cardiac dysfunction induced by HH. Conditional knock-in of Pacs2 recovered HH-induced right cardiac impairment. Thus, PACS2 is essential for protecting cardiomyocytes through ER-mitochondria calcium flux, mitophagy, and mitochondrial energy metabolism. Our work provides insight into the mechanism of HH-induced cardiomyocyte injury and potential targets for maintaining the right cardiac function at the highland.

10.
Curr Pharm Des ; 29(2): 139-148, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36567301

RESUMEN

BACKGROUND: The neurotransmitter metabolism in spontaneously hypertensive rats (SHR) is disordered, and these disturbances in neurotransmitter levels can further exacerbate the development of hypertension. Neurotransmitters can affect the expression of circadian clock genes. OBJECTIVE: To clarify the time-dependent internal mechanism of the imbalance of the target neurotransmitter metabolic rhythm of spontaneously hypertensive rats, the circadian research was carried out by the method of targeted metabolomics and molecular biology technology. METHODS: We have explored the mechanism of isorhynchophylline regulating the circadian rhythm through the ERK signaling pathway and thus treating hypertension by detecting the changes of central hypothalamic biological clock rhythm genes after isorhynchophylline intervention, from hypothalamic neurotransmitter rhythmicity. RESULTS: The expression of rhythm genes in normal rats showed a certain rhythm at 6 time points, while the expression of rhythm genes in model rats decreased, and the gene rhythm returned to normal after isorhynchophylline treatment. Cosine analysis of 12 neurotransmitters in hypothalamus showed that there were 6 rhythmic neurotransmitters in the normal group, while in the model group, 4 of the 6 neurotransmitters lost their rhythmicity, and the rhythmicity returned to normal after isorhynchophylline intervention. Compared with the normal group, the expression of ERK protein in the model group increased significantly and decreased after isorhynchophylline treatment. CONCLUSION: The mechanism of isorhynchophylline treating hypertension is not only the regulation of serum neurotransmitters rhythm, but also acting on rhythm genes in the feedback loop of the central biological clock.


Asunto(s)
Ritmo Circadiano , Hipertensión , Ratas , Animales , Ratas Endogámicas SHR , Ritmo Circadiano/fisiología , Hipertensión/metabolismo , Hipotálamo
11.
Front Physiol ; 13: 1008517, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36353377

RESUMEN

Cardiorenal syndrome (CRS) is defined as a disorder of the heart and kidney, in which acute or chronic injury of one organ may lead to acute or chronic dysfunction of the other. It is characterized by high morbidity and mortality, resulting in high economic costs and social burdens. However, there is currently no effective drug-based treatment. Emerging evidence implicates the involvement of mitophagy in the progression of CRS, including cardiovascular disease (CVD) and chronic kidney disease (CKD). In this review, we summarized the crucial roles and molecular mechanisms of mitophagy in the pathophysiology of CRS. It has been reported that mitophagy impairment contributes to a vicious loop between CKD and CVD, which ultimately accelerates the progression of CRS. Further, recent studies revealed that targeting mitophagy may serve as a promising therapeutic approach for CRS, including clinical drugs, stem cells and small molecule agents. Therefore, studies focusing on mitophagy may benefit for expanding innovative basic research, clinical trials, and therapeutic strategies for CRS.

12.
Foods ; 11(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36429149

RESUMEN

Both DHA and astaxanthin, with multiple conjugated double bonds, are considered as health-promoting molecules. However, their utilizations into food systems are restricted due to their poor water solubility and high oxidizability, plus their certain off-smell. In this study, the interactions between perilla protein isolate (PPI) and flaxseed gum (FG) were firstly investigated using multiple spectroscopies, suggesting that hydrophobic, electrostatic force and hydrogen bonds played important roles. Additionally, double-layer emulsion was constructed by layer-by-layer deposition technology and exhibited preferable effects on masking the fishy smell of algae oil. Calcium ions also showed an improving effect on the elasticity modulus of O/W emulsions and was managed to significantly protect the stability of co-delivered astaxanthin and DHA, without additional antioxidants during storage for 21 days. The vegan system produced in this study may, therefore, be suitable for effective delivery of both ω-3 fatty acid and carotenoids for their further incorporation into food systems, such as plant-based yoghourt, etc.

13.
Food Sci Nutr ; 10(10): 3380-3394, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36249962

RESUMEN

Chaenomeles Fructus is a plant that can be used for both food and medicine. Modern studies have shown that Chaenomeles Fructus has anti-inflammatory and immunosuppressive effects on arthritis. However, the mechanism of action of Chaenomeles Fructus on rheumatoid arthritis (RA) and its main active ingredients are still unclear. This study was aimed at devising an integrated strategy for investigating the bioactivity constituents and possible pharmacological mechanisms of Chaenomeles Fructus against RA. The components of Chaenomeles Fructus were analyzed using UPLC-Q-Exactive orbitrap MS techniques and applied to screen the active components of Chaenomeles Fructus according to their oral bioavailability and drug-likeness index. Then, we speculated on the potential molecular mechanisms of Chaenomeles Fructus against RA through a network pharmacology analysis. Finally, the potential molecular mechanisms of Chaenomeles Fructus against RA were validated in a complete Freund's adjuvant (CFA)-induced RA rat model. We identified 48 components in Chaenomeles Fructus and screened seven bioactive ingredients. The results of the network pharmacology prediction and the experimental verification results were analyzed by Venn analysis, and the experimental results concluded that Chaenomeles Fructus mainly interferes with the inflammation of RA by inhibiting arachidonic acid metabolism and the MAPK signaling pathway. This study identified the ingredients of Chaenomeles Fructus by UPLC-Q-Exactive orbitrap MS and explained the possible mechanisms of Chaenomeles Fructus against RA by integrating network pharmacology and experimental validation.

14.
Adv Mater ; 34(51): e2207331, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36210750

RESUMEN

Heavy-atom-containing clusters, nanocrystals, and other semiconductors can sensitize the triplet states of their surface-bonded chromophores, but the energy loss, such as nonradiative deactivation, often prevents the synergistic light emission in their solid-state coassemblies. Cocrystallization allows new combinations of molecules with complementary properties for achieving functionalities not available in single components. Here, the cocrystal formation that employs platinum(II) acetylacetonate (Pt(acac)2 ) as a triplet sensitizer and electron-deficient 1,4,5,8-naphthalene diimides (NDIs) as organic phosphors is reported. The hybrid cocrystals exhibit room-temperature phosphorescence confined in the low-lying, long-lived triplet state of NDIs with photoluminescence (PL) quantum yield (ΦPL ) exceeding 25% and a phosphorescence lifetime (τPh ) of 156 µs. This remarkable PL property benefits from the noncovalent electronic and spin-orbital coupling between the constituents.

15.
J Food Biochem ; 46(12): e14406, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36121189

RESUMEN

The active compounds isolated from Black pepper have anticancer effects, but the bioactivity of Black pepper essential oil (BP-EO) is rarely studied. BP-EO has poor stability and a suitable dose form should be prepared for in vivo delivery. Triple negative breast cancer (TNBC) has attracted more and more attention due to its high mitotic index, high metastasis rate and poor prognosis. In this study, the composition of BP-EO was analyzed by gas chromatography-mass spectrometry (GC-MS), and nanoparticles (NPs) loaded with BP-EO were prepared by nanoprecipitation method using Eudragit L100 as a carrier. We investigated the preparation, characterization, stability and in vitro release of nanoparticles. MTT assay, cell wound healing, Transwell invasion assay and Western blot were used to study the anti-tumor effect and mechanism of MDA-MB-231 cells. The GC-MS analysis identified a total of 33 compounds among which alkenes account for 63.55%. The prepared BP-EO NPs exhibited nanoscale morphology, good stability and pH-responsive and sustained release character which is suitable for in vivo delivery. BP-EO NPs significantly inhibited the proliferation, migration and invasion of MDA-MB-231 cells. Furthermore, BP-EO NPs significantly inhibited the expressions of Wnt and ß-catenin and significantly activated the expression of GSK-3ß in MDA-MB-231 cells. Therefore, BP-EO NPs prepared in this study provide a new effective strategy for the treatment of TNBC. PRACTICAL APPLICATIONS: Black pepper is rich in essential oil and has excellent antioxidant and antibacterial activities. However, the anti-tumor activity of BP-EO has not been studied. In this study, we found that BP-EO has excellent anticancer activity. To achieve effective encapsulation of black pepper essential oil and an excellent anti-triple negative breast cancer activity, nanoparticles loaded with BP-EO were prepared using Eudragit L100 as the carrier by the nanoprecipitation method. The in vitro study revealed that BP-EO NPs inhibited proliferation, migration and invasion of MDA-MB-231 cells via inhibiting the Wnt/ß-Catenin signaling pathway. This study provides new ideas and innovations for the treatment of invasive triple negative breast cancer in the future. At the same time, we will further reveal the application potential, pharmacokinetic characteristics and precise mechanism of BP-EO NPs in vivo in subsequent studies.


Asunto(s)
Nanopartículas , Aceites Volátiles , Piper nigrum , Neoplasias de la Mama Triple Negativas , Humanos , Aceites Volátiles/farmacología , Aceites Volátiles/química , Piper nigrum/química , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Glucógeno Sintasa Quinasa 3 beta
16.
Front Physiol ; 13: 960480, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36017337

RESUMEN

Left atrial appendage (LAA) thrombus detachment resulting in intracranial embolism is a major complication of atrial fibrillation (AF). Endocardial endothelial cell (EEC) injury leads to thrombosis, whereas autophagy protects against EEC dysfunction. However, the role and underlying mechanisms of autophagy in EECs during AF have not been elucidated. In this study, we isolated EECs from AF model mice and observed reduced autophagic flux and intracellular calcium concentrations in EECs from AF mice. In addition, we detected an increased expression of the mechanosensitive protein PLXND1 in the cytomembranes of EECs. PLXND1 served as a scaffold protein to bind with ORAI1 and further decreased ORAI1-mediated calcium influx. The decrease in the calcium influx-mediated phosphorylation of CAMK2 is associated with the inhibition of autophagy, which results in EEC dysfunction in AF. Our study demonstrated that the change in PLXND1 expression contributes to intracellular calcium dyshomeostasis, which inhibits autophagy flux and results in EEC dysfunction in AF. This study provides a potential intervention target for EEC dysfunction to prevent and treat intracardiac thrombosis in AF and its complications.

17.
J Am Chem Soc ; 144(13): 5718-5722, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35319872

RESUMEN

A supramolecular trilayer nanographene complex consisting of a newly synthesized D3h-symmetric C54-nanographene trisimide (NTI 1) and two hexabenzocoronenes (HBC) has been obtained by self-assembly. This 1:2 complex is structurally well-defined according to UV/vis and single crystal X-ray studies and exhibits high thermodynamic stability even in polar halogenated solvents. Complexation of NTI 1 by two HBC molecules protects the NTI 1 π-surface efficiently from oxygen quenching, thereby leading to a sequestration-induced fluorescence enhancement under ambient conditions.


Asunto(s)
Fluorescencia , Solventes/química , Termodinámica
18.
Commun Biol ; 5(1): 124, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35145192

RESUMEN

Statins play a major role in reducing circulating cholesterol levels and are widely used to prevent coronary artery disease. Although they are recently confirmed to up-regulate mitophagy, little is known about the molecular mechanisms and its effect on endothelial progenitor cell (EPC). Here, we explore the role and mechanism underlying statin (pitavastatin, PTV)-activated mitophagy in EPC proliferation. ApoE-/- mice are fed a high-fat diet for 8 weeks to induce atherosclerosis. In these mice, EPC proliferation decreases and is accompanied by mitochondrial dysfunction and mitophagy impairment via the PINK1-PARK2 pathway. PTV reverses mitophagy and reduction in proliferation. Pink1 knockout or silencing Atg7 blocks PTV-induced proliferation improvement, suggesting that mitophagy contributes to the EPC proliferation increase. PTV elicits mitochondrial calcium release into the cytoplasm and further phosphorylates CAMK1. Phosphorylated CAMK1 contributes to PINK1 phosphorylation as well as mitophagy and mitochondrial function recover in EPCs. Together, our findings describe a molecular mechanism of mitophagy activation, where mitochondrial calcium release promotes CAMK1 phosphorylation of threonine177 before phosphorylation of PINK1 at serine228, which recruits PARK2 and phosphorylates its serine65 to activate mitophagy. Our results further account for the pleiotropic effects of statins on the cardiovascular system and provide a promising and potential therapeutic target for atherosclerosis.


Asunto(s)
Aterosclerosis , Señalización del Calcio , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina , Células Progenitoras Endoteliales , Proteínas Quinasas , Quinolinas , Animales , Ratones , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/prevención & control , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/metabolismo , Proliferación Celular/efectos de los fármacos , Células Progenitoras Endoteliales/efectos de los fármacos , Células Progenitoras Endoteliales/metabolismo , Mitofagia , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Quinolinas/farmacología , Ubiquitina-Proteína Ligasas/metabolismo
19.
Angew Chem Int Ed Engl ; 61(11): e202116603, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35020259

RESUMEN

Conventional square-planar platinum complexes typically form one-dimensional assemblies as a result of unidirectional metallophilic and/or π⋅⋅⋅π intermolecular interactions. Organoplatinum(II) complexes with a cruciform shape are presented herein to construct two-dimensional (2D) microcrystals with full-color and white phosphorescence. These 2D crystals show unique monocomponent π⋅⋅⋅π stacking, from either the cyclometalating or noncyclometalating ligand, and the bicomponent alternate π⋅⋅⋅π stacking from both ligands along different facet directions. Anisotropic tri-directional waveguiding is further implemented on a single hexagonal microcrystal. These results demonstrate the great capability of the organoplatinum(II) cruciform as a general platform to fabricate 2D phosphorescent micro-/nanocrystals for advanced photonic applications.

20.
Nat Commun ; 12(1): 6089, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34667176

RESUMEN

Metal borides/borates have been considered promising as oxygen evolution reaction catalysts; however, to date, there is a dearth of evidence of long-term stability at practical current densities. Here we report a phase composition modulation approach to fabricate effective borides/borates-based catalysts. We find that metal borides in-situ formed metal borates are responsible for their high activity. This knowledge prompts us to synthesize NiFe-Boride, and to use it as a templating precursor to form an active NiFe-Borate catalyst. This boride-derived oxide catalyzes oxygen evolution with an overpotential of 167 mV at 10 mA/cm2 in 1 M KOH electrolyte and requires a record-low overpotential of 460 mV to maintain water splitting performance for over 400 h at current density of 1 A/cm2. We couple the catalyst with CO reduction in an alkaline membrane electrode assembly electrolyser, reporting stable C2H4 electrosynthesis at current density 200 mA/cm2 for over 80 h.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...