Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 35
1.
Front Microbiol ; 15: 1415290, 2024.
Article En | MEDLINE | ID: mdl-38903783

Objective: The aim of this study was to investigate the effects of Lactiplantibacillus plantarum (L. plantarum) and propionic acid (PA) on fermentation characteristics and microbial community of amaranth (Amaranthus hypochondriaus) silage with different moisture contents. Methods: Amaranth was harvested at maturity stage and prepared for ensiling. There were two moisture content gradients (80%: AhG, 70%: AhS; fresh material: FM) and three treatments (control: CK, L. plantarum: LP, propionic acid: PA) set up, and silages were opened after 60 d of ensiling. Results: The results showed that the addition of L. plantarum and PA increased lactic acid (LA) content and decreased pH of amaranth after fermentation. In particular, the addition of PA significantly increased crude protein content (p < 0.05). LA content was higher in wilted silage than in high-moisture silage, and it was higher with the addition of L. plantarum and PA (p < 0.05). The dominant species of AhGLP, AhSCK, AhSLP and AhSPA were mainly L. plantarum, Lentilactobacillus buchneri and Levilactobacillus brevis. The dominant species in AhGCK include Enterobacter cloacae, and Xanthomonas oryzae was dominated in AhGPA, which affected fermentation quality. L. plantarum and PA acted synergistically after ensiling to accelerate the succession of dominant species from gram-negative to gram-positive bacteria, forming a symbiotic microbial network centred on lactic acid bacteria. Both wilting and additive silage preparation methods increased the degree of dominance of global and overview maps and carbohydrate metabolism, and decreased the degree of dominance of amino acid metabolism categories. Conclusion: In conclusion, the addition of L. plantarum to silage can effectively improve the fermentation characteristics of amaranth, increase the diversity of bacterial communities, and regulate the microbial community and its functional metabolic pathways to achieve the desired fermentation effect.

2.
BMC Plant Biol ; 24(1): 555, 2024 Jun 14.
Article En | MEDLINE | ID: mdl-38877393

BACKGROUND: Selenium is essential for livestock and human health. The traditional way of adding selenium to livestock diets has limitations, and there is a growing trend to provide livestock with a safe and efficient source of selenium through selenium-enriched pasture. Therefore, this study was conducted to investigate the effects of selenium enrichment on fermentation characteristics, selenium content, selenium morphology, microbial community and in vitro digestion of silage alfalfa by using unenriched (CK) and selenium-enriched (Se) alfalfa as raw material for silage. RESULTS: In this study, selenium enrichment significantly increased crude protein, soluble carbohydrate, total selenium, and organic selenium contents of alfalfa silage fresh and post-silage samples, and it significantly decreased neutral detergent fiber and acid detergent fiber contents (p < 0.05). Selenium enrichment altered the form of selenium in plants, mainly in the form of SeMet and SeMeCys, which were significantly higher than that of CK (p < 0.05). Selenium enrichment could significantly increase the lactic acid content, reduce the pH value, change the diversity of bacterial community, promote the growth of beneficial bacteria such as Lactiplantibacillus and inhibit the growth of harmful bacteria such as Pantoea, so as to improve the fermentation quality of silage. The in vitro digestibility of dry matter (IVDMD), in vitro digestibility of acid detergent fibers (IVADFD) and in vitro digestibility of acid detergent fibers (IVNDFD) of silage after selenium enrichment were significantly higher than those of CK (p < 0.05). CONCLUSION: This study showed that the presence of selenium could regulate the structure of the alfalfa silage bacterial community and improve alfalfa silage fermentation quality. Selenium enrichment measures can change the morphology of selenium in alfalfa silage products, thus promoting the conversion of organic selenium.


Fermentation , Medicago sativa , Microbiota , Selenium , Silage , Medicago sativa/metabolism , Silage/analysis , Selenium/metabolism , Animals , Animal Feed/analysis
3.
Microorganisms ; 11(2)2023 Feb 17.
Article En | MEDLINE | ID: mdl-36838477

Silage of native grasses can alleviate seasonal forage supply imbalance in pastures and provide additional sources to meet forage demand. The study aimed to investigate the effects of Lactobacillus plantarum (LP), Lactobacillus buchneri (LB), and Lactobacillus plantarum in combination with Lactobacillus buchneri (PB) on the nutritional quality, fermentation quality, and microbial community of native grass silage at 2, 7, 15, and 60 days after ensiling and at 4 and 8 days after aerobic exposure. The results showed that dry matter content, crude protein content, the number of lactic acid bacteria, and lactic acid and acetic acid content increased and pH and ammonia nitrogen content decreased after lactic acid bacteria (LAB) inoculation compared with the control group (CK). LP had the lowest pH and highest lactic acid content but did not have greater aerobic stability. LB maintained a lower pH level and acetic acid remained at a higher level after aerobic exposure; aerobic bacteria, coliform bacteria, yeast, and molds all decreased in number, which effectively improved aerobic stability. The effect of the compound addition of LAB was in between the two other treatments, having higher crude protein content, lactic acid and acetic acid content, lower pH, and ammonia nitrogen content. At the phylum level, the dominant phylum changed from Proteobacteria to Firmicutes after ensiling, and at the genus level, Lactiplantibacillus and Lentilactobacillus were the dominant genera in both LAB added groups, while Limosilactobacillus was the dominant genus in the CK treatment. In conclusion, the addition of LAB can improve native grass silage quality by changing bacterial community structure. LP is beneficial to improve the fermentation quality in the ensiling stage, LB is beneficial to inhibit silage deterioration in the aerobic exposure stage, and compound LAB addition is more beneficial to be applied in native grass silage.

4.
Int J Mol Sci ; 24(1)2023 Jan 03.
Article En | MEDLINE | ID: mdl-36614295

Diabetic cardiomyopathy (DCM) is a myocardial disease independent of other cardiovascular diseases, such as coronary heart disease, hypertension, etc. Lipotoxicity is closely related to DCM. In this study, we investigated the mechanism of lipid metabolism disturbance in DCM in HL-1 cells. Through bioinformatics and Western blotting analysis, we found that canagliflozin (CAN) significantly inhibited the expression of inflammatory factors cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Ferroptosis is mediated by lipid peroxidation. We demonstrated the presence of ferroptosis in cardiomyocytes by detecting intracellular Fe2+ content and the levels of reactive oxygen species (ROS), malondialdehyde (MDA), reduced glutathione (GSH), and mitochondrial membrane potential (MMP). CAN could significantly regulate the indicators of ferroptosis. By using specific inhibitors celecoxib (coxib), S-methylisothiourea sulfate (SMT), Ferrostatin-1 (Fer-1), and Compound C, we further found that CAN regulated inflammation and ferroptosis through AMP-activated protein (AMPK), and inflammation interacted with ferroptosis. Our study indicated that CAN attenuated lipotoxicity in cardiomyocytes by regulating inflammation and ferroptosis through activating the AMPK pathway. This study provides a new direction of myocardial lipotoxicity and some new information for the treatment of DCM.


Canagliflozin , Diabetic Cardiomyopathies , Ferroptosis , Lipid Peroxidation , Sodium-Glucose Transporter 2 Inhibitors , Humans , AMP-Activated Protein Kinases , Canagliflozin/therapeutic use , Diabetic Cardiomyopathies/drug therapy , Ferroptosis/drug effects , Inflammation/drug therapy , Myocytes, Cardiac , Reactive Oxygen Species , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
5.
Front Plant Sci ; 13: 1081280, 2022.
Article En | MEDLINE | ID: mdl-36570947

The leaf type of a plant determines its photosynthetic efficiency and adaptation to the environment. The normal leaves of modern Ginkgo biloba, which is known as a "living fossil" in gymnosperm, evolved from needle-like to fan-shaped with obvious dichotomous venation. However, a newly discovered Ginkgo variety "SongZhen" have different leaf types on a tree, including needle-, trumpet-, strip-, and deeply split fan-shaped leaves. In order to explore the mechanism in forming these leaf types, the microscopy of different leaf types and transcriptome analysis of apical buds of branches with normal or abnormal leaves were performed. We found that the normal leaf was in an intact and unfolded fan shape, and the abnormal leaf was basically split into two parts from the petiole, and each exhibited different extent of variation. The needle-type leaves were the extreme, having no obvious palisade and spongy tissues, and the phloem cells were scattered and surrounded by xylem cells, while the trumpet-type leaves with normal vascular bundles curled inward to form a loop from the abaxial to adaxial side. The other type of leaves had the characteristics among needle-type, trumpet-type, or normal leaves. The transcriptome analysis and quantitative PCR showed that the genes related to abaxial domain were highly expressed, while the adaxial domain promoting genes were decreasingly expressed in abnormal-type leaf (ANL) buds and abnormal leaves, which might lead to the obvious abaxialized leaves of "SongZhen." In addition, the low expression of genes related to leaf boundary development in ANL buds indicated that single- or double-needle (trumpet) leaves might also be due to the leaf tissue fusion. This study provides an insight into the mechanism of the development of the abnormal leaves in "SongZhen" and lays a foundation for investigating the molecular mechanism of the leaf development in gymnosperms.

6.
Nat Plants ; 8(9): 1024-1037, 2022 09.
Article En | MEDLINE | ID: mdl-36050462

Euphyllophytes encompass almost all extant plants, including two sister clades, ferns and seed plants. Decoding genomes of ferns is the key to deep insight into the origin of euphyllophytes and the evolution of seed plants. Here we report a chromosome-level genome assembly of Adiantum capillus-veneris L., a model homosporous fern. This fern genome comprises 30 pseudochromosomes with a size of 4.8-gigabase and a contig N50 length of 16.22 Mb. Gene co-expression network analysis uncovered that homospore development in ferns has relatively high genetic similarities with that of the pollen in seed plants. Analysing fern defence response expands understanding of evolution and diversity in endogenous bioactive jasmonates in plants. Moreover, comparing fern genomes with those of other land plants reveals changes in gene families important for the evolutionary novelties within the euphyllophyte clade. These results lay a foundation for studies on fern genome evolution and function, as well as the origin and evolution of euphyllophytes.


Adiantum , Ferns , Adiantum/genetics , Ferns/genetics , Genome, Plant , Phylogeny
7.
Int J Biochem Cell Biol ; 151: 106297, 2022 10.
Article En | MEDLINE | ID: mdl-36108948

Emphysematous phenotype is the most important phenotypic component of chronic obstructive pulmonary disease and is associated with substantial morbidity and mortality. The current pharmaceutical treatments and therapeutic procedures do not reduce pulmonary damage in patients with emphysematous phenotype. Therefore, it is important to identify effector molecules that can be used as interfering targets in such patients. Apoptosis of type II alveolar epithelial cells plays a key role in the phenotypic formation. This study aimed to further explore the molecular mechanisms involved in this process. The number of type II alveolar epithelial cells was significantly reduced due to increased apoptosis in patients with emphysematous phenotype compared to those with non-emphysematous phenotype. Pleckstrin homology like domain, family A, member 1 (PHLDA1) was mainly distributed in type II alveolar epithelial cells in both groups but was markedly reduced in patients with emphysematous phenotype. Overexpression of PHLDA1 prevented cigarette smoke extract-stimulated apoptosis of type II alveolar epithelial cells, whereas its knockdown worsened the apoptosis. PHLDA1 binding ability to tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon (YWHAE) was weakened after exposure to cigarette smoke extract, with decreased PHLDA1 level lowering the abundance of YWHAE and attenuating the binding ability of YWHAE to p-Bad. These results demonstrate that considerable apoptosis of type II alveolar epithelial cells occurs in patients with emphysematous phenotype, and PHLDA1 may act as an effective antiapoptotic factor via YWHAE. Moreover, PHLDA1 may serve as a potential interfering target, providing insights into therapeutic strategies for emphysematous phenotype.


Pulmonary Disease, Chronic Obstructive , Tryptophan Hydroxylase/metabolism , Tryptophan , Alveolar Epithelial Cells , Apoptosis/genetics , Blood Proteins , Humans , Phenotype , Phosphoproteins , Tryptophan/genetics , Tyrosine 3-Monooxygenase/genetics
8.
Int J Mol Sci ; 23(18)2022 Sep 09.
Article En | MEDLINE | ID: mdl-36142338

Novel radar-wave absorption nanocomposites are developed by filling the nanoscaled ferrites of strontium ferroxide (SrFe12O19) and carbonyl iron (CIP) individually into the highly flexible liquid silicone rubber (LSR) considered as dielectric matrix. Nanofiller dispersivities in SrFe12O19/LSR and CIP/LSR nanocomposites are characterized by scanning electronic microscopy, and the mechanical properties, electric conductivity, and DC dielectric-breakdown strength are tested to evaluate electrical insulation performances. Radar-wave absorption performances of SrFe12O19/LSR and CIP/LSR nanocomposites are investigated by measuring electromagnetic response characteristics and radar-wave reflectivity, indicating the high radar-wave absorption is dominantly derived from magnetic losses. Compared with pure LSR, the SrFe12O19/LSR and CIP/LSR nanocomposites represent acceptable reductions in mechanical tensile and dielectric-breakdown strengths, while rendering a substantial nonlinearity of electric conductivity under high electric fields. SrFe12O19/LSR nanocomposites provide high radar-wave absorption in the frequency band of 11~18 GHz, achieving a minimum reflection loss of -33 dB at 11 GHz with an effective absorption bandwidth of 10 GHz. In comparison, CIP/LSR nanocomposites realize a minimum reflection loss of -22 dB at 7 GHz and a remarkably larger effective absorption bandwidth of 3.9 GHz in the lower frequency range of 2~8 GHz. Radar-wave transmissions through SrFe12O19/LSR and CIP/LSR nanocomposites in single- and double-layered structures are analyzed with CST electromagnetic-field simulation software to calculate radar reflectivity for various absorbing-layer thicknesses. Dual-layer absorbing structures are modeled by specifying SrFe12O19/LSR and CIP/LSR nanocomposites, respectively, as match and loss layers, which are predicted to acquire a significant improvement in radar-wave absorption when the thicknesses of match and loss layers approach 1.75 mm and 0.25 mm, respectively.


Radar , Silicone Elastomers , Electricity , Iron/chemistry , Strontium
9.
Antioxidants (Basel) ; 11(5)2022 Apr 19.
Article En | MEDLINE | ID: mdl-35624663

Lipotoxicity is an important factor in the development and progression of nonalcoholic steatohepatitis. Excessive accumulation of saturated fatty acids can increase the substrates of the mitochondrial electron transport chain in hepatocytes and cause the generation of reactive oxygen species, resulting in oxidative stress, mitochondrial dysfunction, loss of mitochondrial membrane potential, impaired triphosphate (ATP) production, and fracture and fragmentation of mitochondria, which ultimately leads to hepatocellular inflammatory injuries, apoptosis, and necrosis. In this study, we systematically investigated the effects and molecular mechanisms of empagliflozin on lipotoxicity in palmitic acid-treated LO2 cell lines. We found that empagliflozin protected hepatocytes and inhibited palmitic acid-induced lipotoxicity by reducing oxidative stress, improving mitochondrial functions, and attenuating apoptosis and inflammation responses. The mechanistic study indicated that empagliflozin significantly activated adenosine 5'-monophosphate (AMP)-activated protein kinase alpha (AMPKα) through Calcium/Calmodulin dependent protein kinase kinase beta (CAMKK2) instead of liver kinase B1 (LKB1) or TGF-beta activated kinase (TAK1). The activation of empagliflozin on AMPKα not only promoted FoxO3a phosphorylation and thus forkhead box O 3a (FoxO3a) nuclear translocation, but also promoted Nrf2 nuclear translocation. Furthermore, empagliflozin significantly upregulated the expressions of antioxidant enzymes superoxide dismutase (SOD) and HO-1. In addition, empagliflozin did not attenuate lipid accumulation at all. These results indicated that empagliflozin mitigated lipotoxicity in saturated fatty acid-induced hepatocytes, likely by promoting antioxidant defense instead of attenuating lipid accumulation through enhanced FoxO3a and Nrf2 nuclear translocation dependent on the CAMKK2/AMPKα pathway. The CAMKK2/AMPKα pathway might serve as a promising target in treatment of lipotoxicity in nonalcoholic steatohepatitis.

11.
Antonie Van Leeuwenhoek ; 115(3): 353-364, 2022 Mar.
Article En | MEDLINE | ID: mdl-35088183

A bacterial strain, designated AETb3-4T was isolated from the rhizosphere of lily. Comparison of 16S rRNA gene sequences showed that the sequence from strain AETb3-4T exhibits high sequence similarity with those of Arthrobacter silviterrae KIS14-16T (97.9%), Arthrobacter livingstonensis LI2T (97.2%) and Arthrobacter stackebrandtii CCM 2783T (97.0%). Whole genome average nucleotide identity (ANI) and the digital DNA-DNA hybridization (dDDH) values between strain AETb3-4T and the reference strains A. silviterrae DSM 27180T, A. livingstonensis L12T and A. stackebrandtii DSM 16005T were below 83.6% and 27.7%, respectively, values which are considerably below the proposed thresholds for the species delineation, consistent with the proposal that strain AETb3-4T represents a novel species. The genome size of strain AETb3-4T is 4.33 Mb and the genomic DNA G + C content is 67.3%. The main polar lipids were identified as phosphatidylglycerol, diphosphatidylglycero, phosphatidylinositol and an unidentified glycolipid. The major fatty acids (> 10%) were identified as anteiso-C15: 0 and anteiso-C17: 0. The predominant menaquinone was found to be menaquinone 9 (MK-9) (H2) (82.2%). Phenotypic tests allowed the strain to be differentiated from its close phylogenetic neighbors. Based on the results obtained, it is proposed that the strain AETb3-4T (= CFCC 16390T = LMG 31708T) represents a novel species in the genus Arthrobacter, for which the names Arthrobacter wenxiniae sp. nov. is proposed. In addition, the novel strain AETb3-4T has multiple plant growth-promoting characters including ACC-deaminase activity and production of IAA. Furthermore, the genome contains secondary metabolite biosynthesis gene clusters, including a carotenoid biosynthetic gene cluster, suggesting potential capacities for secondary metabolite synthesis. These data suggest that strain AETb3-4T may have potential applications both in medicine and sustainable agriculture.


Arthrobacter , Bacterial Typing Techniques , Carotenoids , DNA, Bacterial/genetics , Fatty Acids , Multigene Family , Nucleic Acid Hybridization , Peptidoglycan , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2
12.
Int J Mol Sci ; 22(24)2021 Dec 11.
Article En | MEDLINE | ID: mdl-34948132

The microenvironment plays a vital role in tumor progression, and hypoxia is a typical microenvironment feature in nearly all solid tumors. In this study, we focused on elucidating the effect of canagliflozin (CANA), a new class of antidiabetic agents, on hepatocarcinoma (HCC) tumorigenesis under hypoxia, and demonstrated that CANA could significantly inhibit hypoxia-induced metastasis, angiogenesis, and metabolic reprogramming in HCC. At the molecular level, this was accompanied by a reduction in VEGF expression level, as well as a reduction in the epithelial-to-mesenchymal transition (EMT)-related proteins and glycolysis-related proteins. Next, we focused our study particularly on the modulation of HIF-1α by CANA, which revealed that CANA decreased HIF-1α protein level by inhibiting its synthesis without affecting its proteasomal degradation. Furthermore, the AKT/mTOR pathway, which plays an important role in HIF-1α transcription and translation, was also inhibited by CANA. Thus, it can be concluded that CANA decreased metastasis, angiogenesis, and metabolic reprogramming in HCC by inhibiting HIF-1α protein accumulation, probably by targeting the AKT/mTOR pathway. Based on our results, we propose that CANA should be evaluated as a new treatment modality for liver cancer.


Canagliflozin/pharmacology , Carcinoma, Hepatocellular/drug therapy , Glycolysis/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Liver Neoplasms/drug therapy , Neovascularization, Pathologic/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Hypoxia/drug effects , Cell Hypoxia/genetics , Hep G2 Cells , Human Umbilical Vein Endothelial Cells , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Mice, SCID , Neoplasm Metastasis , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Proto-Oncogene Proteins c-akt/genetics , TOR Serine-Threonine Kinases/genetics , Xenograft Model Antitumor Assays
13.
Eur J Pharmacol ; 907: 174304, 2021 Sep 15.
Article En | MEDLINE | ID: mdl-34224699

Dapagliflozin (DAPA), a kind of sodium-glucose cotransporter 2(SGLT2) inhibitor is used to treat diabetes mellitus by inhibiting urine glucose reuptake. Recent clinical outcomes indicate that SGLT2 inhibitors may exert pharmacological activities against non-alcoholic fatty liver diseases. Nonetheless, the underlying molecular mechanisms are still poorly elucidated. In this study, we investigated the potential anti-fatty liver effects of DAPA in vivo and in vitro and assayed their underlying mechanisms. Male NIH (National Institutes of Health) mice were fed with a high-fat diet (HFD) and then treated with DAPA by gavage for 4 weeks. In the following experiments, L02 cells were treated with oleic acid (OA) and different concentrations of DAPA to assess lipid metabolism. Our results revealed that DAPA administration could remarkably suppress excessive fat accumulation in the liver tissues of HFD-fed mice and OA-treated L02 cells. Importantly, DAPA could downregulate the expression levels of proteins related to lipid synthesis and upregulate the expression levels of genes associated with fatty acid oxidation in vitro and in vivo. We also found that DAPA intervention could activate adenosine monophosphate-activated protein kinase (AMPK) phosphorylation but inhibit mammalian target of rapamycin (mTOR) phosphorylation in vitro and in vivo. AMPK activation might be mediated by increasing liver kinase B1 activity and decreasing ATP level. Furthermore, these ameliorative effects were completely eliminated by an AMPK inhibitor, compound C. This study suggested that DAPA might remarkably ameliorate hepatic steatosis mediated through the AMPK/mTOR pathway and thus could be a potential drug candidate for the treatment of fatty liver diseases.


AMP-Activated Protein Kinases , Diet, High-Fat , Oleic Acid , Animals , Benzhydryl Compounds , Glucosides , Liver/drug effects , Male , Mice , Non-alcoholic Fatty Liver Disease , Oleic Acid/pharmacology
14.
Front Mol Biosci ; 8: 650604, 2021.
Article En | MEDLINE | ID: mdl-34277700

Chronic obstructive pulmonary disease (COPD) is a highly heterogeneous disease. Emphysematous phenotype is the most common and critical phenotype, which is characterized by progressive lung destruction and poor prognosis. However, the underlying mechanism of this structural damage has not been completely elucidated. A total of 12 patients with COPD emphysematous phenotype (COPD-E) and nine patients with COPD non-emphysematous phenotype (COPD-NE) were enrolled to determine differences in differential abundant protein (DAP) expression between both groups. Quantitative tandem mass tag-based proteomics was performed on lung tissue samples of all patients. A total of 29 and 15 lung tissue samples from patients in COPD-E and COPD-NE groups, respectively, were used as the validation cohort to verify the proteomic analysis results using western blotting. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted for DAPs. A total of 4,343 proteins were identified, of which 25 were upregulated and 11 were downregulated in the COPD-E group. GO and KEGG analyses showed that wound repair and retinol metabolism-related pathways play an essential role in the molecular mechanism of COPD emphysematous phenotype. Three proteins, namely, KRT17, DHRS9, and FMO3, were selected for validation. While KRT17 and DHRS9 were highly expressed in the lung tissue samples of the COPD-E group, FMO3 expression was not significantly different between both groups. In conclusion, KRT17 and DHRS9 are highly expressed in the lung tissue of patients with COPD emphysematous phenotype. Therefore, these proteins might involve in wound healing and retinol metabolism in patients with emphysematous phenotype and can be used as phenotype-specific markers.

15.
Front Pharmacol ; 12: 669403, 2021.
Article En | MEDLINE | ID: mdl-34177583

Background: The mechanisms underlying differences in the susceptibility to chronic obstructive pulmonary disease (COPD) exacerbations between patients are not well understood. Recent studies have shown that the patients with frequent COPD exacerbations is related to specific protein expression in lung tissue. Anterior gradient 3 (AGR3) is expressed in airway epithelial cells in the lung and proteomic analysis revealed that its expression is decreased in patients with frequent COPD exacerbations. Moreover, the loss of epithelial integrity might facilitate trans-epithelial permeability of pathogens in such patients. This study was performed to determine that AGR3 protein play a role in COPD frequency exacerbators. Methods: Human lung tissues were collected from current-smoking patients (Control; n = 15) as well as patients with infrequent COPD exacerbations (IFCOPD; n = 18) and frequent COPD exacerbations (FCOPD; n = 8). While AGR3 protein expression was measured by immunohistochemistry and western blotting, AGR mRNA expression was determined by real time quantitative polymerase chain reaction (RT-qPCR). Furthermore, adherent junctions (AJs) and tight junctions (TJs) protein expression in human lung tissues were measured by immunohistochemistry. The effects of cigarette smoke extract (CSE) on AJ and TJ protein and mRNA expression in BEAS-2B cells were assessed by western blotting and RT-qPCR. In addition, the effect of AGR3 overexpression and knockdown on AJ and TJ protein expression was determined. Results: AGR3 was mainly expressed in the airway epithelium and AGR3-positive products were localized in the cytoplasm. Western blotting and RT-qPCR results showed that AGR3 protein (p = 0.009) and mRNA (p = 0.04) expression in the FCOPD group was significantly lower than that in the IFCOPD group. Moreover, E-cadherin, occludin, and zonula occludens-1 (ZO-1) expression was lower in the FCOPD group than in the IFCOPD group. The protein and mRNA expression of E-cadherin, occludin, and ZO-1 was decreased within 24 h post-CSE exposure. AGR3 overexpression rescued CSE-induced downregulation of E-cadherin, occludin, and ZO-1. Conclusion: Difference in AGR3 expression in the lung tissue might be correlated with increased susceptibility to COPD exacerbation. AGR3 can prevent CSE-induced downregulation of E-cadherin, occludin, and ZO-1 in airway epithelial cells. Loss of AGR3 might promote viral and bacterial infection and induce immune inflammation to increase COPD exacerbation.

16.
iScience ; 24(6): 102521, 2021 Jun 25.
Article En | MEDLINE | ID: mdl-34142035

Lipotoxicity plays an important role in the development of diabetic heart failure (HF). Canagliflozin (CAN), a marketed sodium-glucose co-transporter 2 inhibitor, has significantly beneficial effects on HF. In this study, we evaluated the protective effects and mechanism of CAN in the hearts of C57BL/6J mice induced by high-fat diet/streptozotocin (HFD/STZ) for 12 weeks in vivo and in HL-1 cells (a type of mouse cardiomyocyte line) induced by palmitic acid (PA) in vitro. The results showed that CAN significantly ameliorated heart functions and inflammatory responses in the hearts of the HFD/STZ-induced diabetic mice. CAN significantly attenuated the inflammatory injury induced by PA in the HL-1 cells. Furthermore, CAN seemed to bind to the mammalian target of rapamycin (mTOR) and then inhibit mTOR phosphorylation and hypoxia-inducible factor-1α (HIF-1α) expression. These results indicated that CAN might attenuate lipotoxicity in cardiomyocytes by inhibiting the mTOR/HIF-1α pathway and then show protective effects on diabetic hearts.

17.
Antonie Van Leeuwenhoek ; 114(8): 1213-1224, 2021 Aug.
Article En | MEDLINE | ID: mdl-34002321

A novel Gram-stain-negative, aerobic and rod-shaped bacterium with a single polar flagellum or a stalk at the end of the cell, was isolated from maize roots in the Fangshan District of Beijing, People's Republic of China. The new strain designated 774T produced indole acetic acid (IAA). The 16S rRNA gene sequence analysis indicated that strain 774T belongs to the genus Caulobacter and is closely related to Caulobacter flavus RHGG3T, Caulobacter zeae 410Tand Caulobacter radices 695T, all with sequence similarities of 99.9%. The genome size of strain774T was 5.4 Mb, comprising 5042 predicted genes with a DNA G+C content of 68.7%.Three striking lasso peptide biosynthetic gene clusters and two IAA synthesis genes belonging to the TPM pathway were also found in the genome of strain 774T. The average nucleotide identity values and digital DNA-DNA hybridization values of the strain774T with its closely phylogenetic neighbours were less than 91.5% and 45.0%, respectively, indicating a new Caulobacter species. The major fatty acids of strain774T were identified as C16: 0 (27.7%), summed feature 3 (C16: 1ω6c and/or C16: 1ω7c) (12.6%) and summed feature 8 (C18: 1ω7c and/or C18: 1ω6c) (42.9%).The major polar lipids consisted of phosphatidyl-glycerol and glycolipids. The predominant ubiquinone was identified as Quinone 10. Based on the polyphasic characterization, strain 774T represents a novel species of the genus Caulobacter, for which the name Caulobacter endophyticus sp. nov. is proposed with 774T (= CGMCC 1.16558T = DSM 106777T) as the type strain.


Caulobacter , Zea mays , Bacterial Typing Techniques , Caulobacter/genetics , DNA, Bacterial/genetics , Fatty Acids/analysis , Humans , Indoleacetic Acids , Multigene Family , Peptides , Phospholipids , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil Microbiology , Ubiquinone
18.
Int Immunopharmacol ; 96: 107773, 2021 Jul.
Article En | MEDLINE | ID: mdl-34020392

To date, drugs to attenuate cytokine storm in severe cases of Corona Virus Disease 2019 (COVID-19) are not available. In this study, we investigated the effects of intragastric and atomized administration of canagliflozin (CAN) on cytokine storm in lung tissues of lipopolysaccharides (LPS)-induced mice. Results showed that intragastric administration of CAN significantly and widely inhibited the production of inflammatory cytokines in lung tissues of LPS-induced sepsis mice. Simultaneously, intragastric administration of CAN significantly improved inflammatory pathological changes of lung tissues. Atomized administration of CAN also exhibited similar effects in LPS-induced sepsis mice. Furthermore, CAN significantly inhibited hypoxia inducible factor 1α (HIF-1α) and phosphofructokinase-2/fructose-2,6-bisphosphatase 3 (PFKFB3) protein levels in LPS-treated lung tissues. These results indicated that CAN might attenuate cytokine storm and reduce the inflammatory symptoms in critical cases in COVID-19. Its action mechanism might involve the regulation of HIF-1α and glycolysis in vivo. However, further studies about clinical application and mechanism analysis should be validated in the future.


COVID-19 Drug Treatment , Canagliflozin/pharmacology , Cytokine Release Syndrome , Animals , Cytokine Release Syndrome/chemically induced , Lipopolysaccharides/toxicity , Male , Mice , SARS-CoV-2 , Sepsis/chemically induced
19.
BMC Plant Biol ; 20(1): 509, 2020 Nov 05.
Article En | MEDLINE | ID: mdl-33153427

BACKGROUND: Growth-regulating factors (GRFs) are plant-specific transcription factors that control organ size. Nineteen GRF genes were identified in the Populus trichocarpa genome and one was reported to control leaf size mainly by regulating cell expansion. In this study, we further characterize the roles of the other poplar GRFs in leaf size control in a similar manner. RESULTS: The 19 poplar GRF genes were clustered into six groups according to their phylogenetic relationship with Arabidopsis GRFs. Bioinformatic analysis, degradome, and transient transcription assays showed that 18 poplar GRFs were regulated by miR396, with GRF12b the only exception. The functions of PagGRF6b (Pag, Populus alba × P. glandulosa), PagGRF7a, PagGRF12a, and PagGRF12b, representing three different groups, were investigated. The results show that PagGRF6b may have no function on leaf size control, while PagGRF7a functions as a negative regulator of leaf size by regulating cell expansion. By contrast, PagGRF12a and PagGRF12b may function as positive regulators of leaf size control by regulating both cell proliferation and expansion, primarily cell proliferation. CONCLUSIONS: The diversity of poplar GRFs in leaf size control may facilitate the specific, coordinated regulation of poplar leaf development through fine adjustment of cell proliferation and expansion.


Plant Growth Regulators/physiology , Plant Leaves/growth & development , Populus/physiology , Arabidopsis/genetics , Arabidopsis/physiology , Cell Enlargement , Cell Proliferation/genetics , Gene Expression Regulation, Plant/genetics , Phylogeny , Plant Growth Regulators/genetics , Plant Leaves/anatomy & histology , Plants, Genetically Modified , Populus/anatomy & histology , Populus/genetics , Populus/growth & development
20.
Syst Appl Microbiol ; 43(6): 126135, 2020 Nov.
Article En | MEDLINE | ID: mdl-32971439

Two plant-associated bacterial strains were isolated from Beijing, China. The two strains possessed almost identical 16S rRNA gene sequences. However, REP-PCR fingerprint patterns discriminated that they were not from one clonal origin. The average nucleotide identity (ANI) value and the digital DNA-DNA hybridization (dDDH) value between the two strains were 99.4% and 94.7%, respectively, suggesting that they belonged to the same species. The 16S rRNA gene phylogeny analysis indicated that the two strains belonged to the genus Variovorax and were closely related to V. paradoxus NBRC 15149T and V. boronicumulans BAM-48T. Their phylogenetic relationship were confirmed in both phylogenetic trees constructed with house-keeping gene sequences and concatenated core genes of the genome. The ANI and dDDH comparisons among 502T and the most related type strains showed values below the accepted threshold for species discrimination. The genome sizes of strains 502T and T529 were 6.76 and 6.69 Mbp, respectively. The strain 502T had 6,227 predicted genes with DNA G+C content of 67.4 %. The respiratory quinone was ubiquinone-8 and the major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphospatidylglycerol. The major fatty acids of strain 502T were C10: 03-OH (26.2%), C16:0 (12.9%), C17:0 cyclo (14.5%) and summed feature 3 (21.4%). Furthermore, both strains showed the potential of plant growth promotion. Based on these results, the two isolates could be considered to represent a novel species of the genus Variovorax, for which the name Variovorax beijingensis sp. nov., is proposed, with 502T (= DSM 106862T = CGMCC 1.16560T) as the type strain.


Comamonadaceae/classification , Phylogeny , Solanum lycopersicum/microbiology , Zea mays/microbiology , Bacterial Typing Techniques , Base Composition , Beijing , Comamonadaceae/isolation & purification , DNA, Bacterial/genetics , Fatty Acids/chemistry , Genes, Bacterial , Nucleic Acid Hybridization , Phospholipids/chemistry , Plant Roots/microbiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Ubiquinone/chemistry
...