Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
J Adv Res ; 2024 Feb 18.
Article En | MEDLINE | ID: mdl-38373650

INTRODUCTION: Valerenic acid (VA) is a unique and biologically active component in Valeriana officinalis L., which has been reported to have a regulatory effect on the cardiovascular system. However, its therapeutic effects on pathological myocardial hypertrophy (PMH) and the underlying mechanisms are undefined. OBJECTIVES: Our study aims to elucidate how VA improves PMH, and preliminarily discuss its mechanism. METHODS: The efficacy of VA on PMH was confirmed by in vivo and in vitro experiments and the underlying mechanism was investigated by molecular dynamics (MD) simulations and specific siRNA interference. RESULTS: VA enhanced cardiomyocyte fatty acid oxidation (FAO), inhibited hyper-activated glycolysis, and improved the unbalanced pyruvate-lactate axis. VA could significantly improve impaired mitochondrial function and reduce the triglyceride (TG) in the hypertrophic myocardium while reducing the lactate (LD) content. Molecular mechanistic studies showed that VA up-regulated the expression of peroxisome proliferator-activated receptor-α (PPARα) and downstream FAO-related genes including CD36, CPT1A, EHHADH, and MCAD. VA reduced the expression of ENO1 and PDK4, the key enzymes in glycolysis. Meanwhile, VA improved the pyruvate-lactate axis and promoted the aerobic oxidation of pyruvate by inhibiting LDAH and MCT4. MD simulations confirmed that VA can bind with the F273 site of PPARα, which proposes VA as a potential activator of the PPARα. CONCLUSION: Our results demonstrated that VA might be a potent activator for the PPARα-mediated pathway. VA directly targets the PPARα and subsequently promotes energy metabolism to attenuate PMH, which can be applied as a potentially effective drug for the treatment of HF.

2.
Oxid Med Cell Longev ; 2022: 7176282, 2022.
Article En | MEDLINE | ID: mdl-36275901

Doxorubicin (DOX) is an anthracycline chemotherapy drug, which is indispensable in antitumor therapy. However, its subsequent induction of cardiovascular disease (CVD) has become the primary cause of mortality in cancer survivors. Accumulating evidence has demonstrated that cardiac mitochondrial bioenergetics changes have become a significant marker for doxorubicin-induced cardiotoxicity (DIC). Here, we mainly summarize the related mechanisms of DOX-induced cardiac mitochondrial bioenergetics disorders reported in recent years, including mitochondrial substrate metabolism, the mitochondrial respiratory chain, myocardial ATP storage and utilization, and other mechanisms affecting mitochondrial bioenergetics. In addition, intervention for DOX-induced cardiac mitochondrial bioenergetics disorders using chemical drugs and traditional herbal medicine is also summarized, which will provide a comprehensive process to study and develop more appropriate therapeutic strategies for DIC.


Cardiotoxicity , Heart Diseases , Humans , Cardiotoxicity/metabolism , Myocytes, Cardiac/metabolism , Doxorubicin/adverse effects , Energy Metabolism , Heart Diseases/chemically induced , Heart Diseases/drug therapy , Heart Diseases/metabolism , Adenosine Triphosphate/metabolism
3.
Phytomedicine ; 106: 154439, 2022 Nov.
Article En | MEDLINE | ID: mdl-36108374

BACKGROUND: Doxorubicin (DOX) is a powerful anti-tumor anthracycline drug. However, its clinical use is limited due to the side effect of cardiotoxicity. Tanshinone I (Tan I) is one of the major tanshinones isolated from Salvia miltiorrhiza. Studies have shown that Tan I is effective in the treatment of cardiovascular diseases. However, the potential effects of Tan I against DOX-induced cardiotoxicity (DIC) have yet to be explored. PURPOSE: This study aimed to explore whether Tan I can protect against DIC and to reveal whether Tan I can exert anti-oxidative effect by regulating nuclear erythroid factor 2-related factor 2 (Nrf2) pathway. METHODS: DIC models were established in vivo by intravenous injection of DOX. Echocardiography was used to monitor the cardiac function of mice. Transmission electron microscopy was used to assess mitochondrial damage. Oxidative stress was measured by dihydroethidium (DHE) staining and western blotting. The accumulation and nuclear translocation of Nrf2 was detected by immunofluorescence. H9C2 cellular DIC model was established in vitro to explore the pharmacological mechanism. Nrf2 small interfering (si)-RNA was applied to H9C2 cells to explore whether Tan I exerted protective effect against DIC through Nrf2 signaling pathway. The protective effects of Tan I on mitochondrial function and mitochondrial membrane permeability were measured by MitoSOX™ Red and JC-1 staining assays, respectively. RESULTS: In vivo experiments revealed that Tan I could improve cardiac function and protect against DOX-induced myocardial structural damages in mice models. The oxidative stress induced by DOX was suppressed and apoptosis was mitigated by Tan I treatment. Tan I protected against DOX-induced mitochondrial structural damage. Meanwhile, key proteins in Nrf2 pathways were upregulated by Tan I treatment. In vitro studies showed that Tan I attenuated DOX-induced generation of reactive oxygen species (ROS) in cultured H9C2 cells, reduced apoptotic rates, protected mitochondrial functions and up-regulated Nrf2 signaling pathway. Tan I promoted accumulation and nuclear translocation of Nrf2 protein. In addition, interference of Nrf2 abrogated the anti-oxidative effects of Tan I and reversed the expressions of key proteins in Nrf2 pathway. The protective effects of Tan I on mitochondrial integrity was also mitigated by Nrf2 interference. CONCLUSION: Tan I could reduce oxidative stress and protect against DIC through regulating Nrf2 signaling pathway. Nrf2 is a potential target and Tan I is a novel candidate agent for the treatment of DIC.


Abietanes , Cardiotoxicity , NF-E2-Related Factor 2 , Animals , Mice , Abietanes/pharmacology , Apoptosis , Cardiotoxicity/drug therapy , Cardiotoxicity/metabolism , Doxorubicin/adverse effects , Myocytes, Cardiac , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , RNA , Signal Transduction
4.
Oxid Med Cell Longev ; 2022: 4344677, 2022.
Article En | MEDLINE | ID: mdl-36120600

Doxorubicin (DOX), the anthracycline chemotherapeutic agent, is widely used for the treatment of various cancers. However, its clinical application is compromised by dose-dependent and fatal cardiotoxicity. This study is aimed at investigating the cardioprotective effects of Qishen granule (QSG) and the specific mechanism by which QSG alleviates DOX-induced cardiotoxicity (DIC) and providing an alternative for the treatment of DIC. We first evaluated the cardioprotective effects of QSG in a DIC mouse model, and the obtained results showed that QSG significantly protected against DOX-induced myocardial structural and functional damage, mitochondrial oxidative damage, and apoptosis. Subsequently, after a comprehensive understanding of the specific roles and recent developments of p53-mediated mitochondrial quality control mechanisms in DIC, we investigated whether QSG acted on MDM2 to regulate the activity of p53 and downstream mitophagy and mitochondrial biogenesis. The in vivo results showed that DOX inhibited mitochondrial biogenesis and blocked mitophagy in the mouse myocardium, while QSG reversed these effects. Mechanistically, we combined nutlin-3, which inhibits the binding of p53 and MDM2, with DOX and QSG and evaluated their influence on mitophagy and mitochondrial biogenesis in H9C2 cardiomyocytes. The obtained results showed that both DOX and nutlin-3 substantially inhibited mitophagy and mitochondrial biogenesis and induced mitochondrial oxidative damage and apoptosis, which could be partially recovered by QSG. Importantly, the immunoprecipitation results showed that QSG promoted the binding of MDM2 to p53, thus decreasing the level of p53 protein and the binding of p53 to Parkin. Collectively, QSG could promote the degradation of p53 by enhancing the binding of MDM2 to the p53 protein, resulting in the reduced binding of p53 to the Parkin protein, thus improving Parkin-mediated mitophagy. Increased degradation of p53 protein by QSG simultaneously enhanced mitochondrial biogenesis mediated by PGC-1α. Ultimately, QSG relieved DOX-induced mitochondrial oxidative damage and apoptosis by coordinating mitophagy and mitochondrial biogenesis.


Cardiotoxicity , Mitophagy , Animals , Cardiotoxicity/prevention & control , Doxorubicin/toxicity , Drugs, Chinese Herbal , Mice , Organelle Biogenesis , Tumor Suppressor Protein p53 , Ubiquitin-Protein Ligases/metabolism
5.
Front Pharmacol ; 13: 864326, 2022.
Article En | MEDLINE | ID: mdl-35370720

Aims: Cardiac lipotoxicity is the common consequence of lipid metabolism disorders in cardiomyocytes during development of heart failure (HF). Adenosine 5'monophosphate-activated protein kinase (AMPK) acts as an energy sensor and has a beneficial effect in reducing lipotoxicity. Notoginsenoside R1 (NGR1) is extracted from the traditional Chinese medicine Panax notoginseng (Burkill) F.H.Chen (P. notoginseng) and has definite cardioprotective effects. However, whether NGR1 can attenuate HF by mitigating lipotoxicity has not been elucidated yet. This study aimed to explore whether NGR1 plays a protective role against HF by ameliorating cardiac lipotoxicity via the AMPK pathway. Methods: In this study, HF mice model was established by left anterior descending (LAD) ligation. palmitic acid (PA) stimulated H9C2 cell model was applied to clarify the effects and potential mechanism of NGR1 on lipotoxicity. In vivo, NGR1 (7.14 mg/kg/days) and positive drug (simvastatin: 2.9 mg/kg/days) were orally administered for 14 days. Echocardiography was applied to assess heart functions. Lipid levels were measured by Enzyme-linked immunosorbent assay (ELISA) and key proteins in the AMPK pathway were detected by western blots. In vitro, NGR1 (40 µmol/L) or Compound C (an inhibitor of AMPK, 10 µmol/L) was co-cultured with PA stimulation for 24 h in H9C2 cells. CCK-8 assay was used to detect cell viability. Key lipotoxicity-related proteins were detected by western blots and the LipidTOX™ neutral lipid stains were used to assess lipid accumulation. In addition, Apoptosis was assessed by Hoechst/PI staining. Results: NGR1 could significantly improve the cardiac function and myocardial injury in mice with HF and up-regulate the expression of p-AMPK. Impressively, NGR1 inhibited the synthesis of diacylglycerol (DAG) and ceramide and promoted fatty acid oxidation (FAO) in vivo. Moreover, NGR1 significantly promoted expression of CPT-1A, the key enzyme in FAO pathway, and down-regulated the expression of GPAT and SPT, which were the key enzymes catalyzing production of DAG and ceramide. In vitro experiments showed that NGR1 could significantly attenuate lipid accumulation in PA-induced H9C2 cells and the Hoechst/PI staining results showed that NGR1 ameliorated lipotoxicity-induced apoptosis in PA-stimulated H9C2 cell model. Furthermore, co-treatment with inhibitor of AMPK abrogated the protective effects of NGR1. The regulative effects of NGR1 on lipid metabolism were also reversed by AMPK inhibitor. Conclusion: NGR1 could significantly improve the heart function of mice with HF and reduce cardiac lipotoxicity. The cardio-protective effects of NGR1 are mediated by the activation of AMPK pathway.

6.
Front Pharmacol ; 13: 828061, 2022.
Article En | MEDLINE | ID: mdl-35264961

Aim: Inflammation and fibrosis have been shown to be critical factors in heart failure (HF) progression. Calycosin (Cal) is the major active component of Astragalus mongholicus Bunge and has been reported to have therapeutic effects on the cardiac dysfunction after myocardial infarction. However, whether Cal could ameliorate myocardial infarction (MI)-induced inflammation and fibrosis and precise mechanisms remain uncertain. The aim of this study is to explore the role of Cal in HF and to clarify the underlying mechanisms. Methods: For in vivo experiments, rats underwent left anterior descending artery ligation for heart failure model, and the cardioprotective effects of Cal were measured by echocardiographic assessment and histological examination. RNA-seq approach was applied to explore potential differential genes and pathways. For further mechanistic study, proinflammatory-conditioned media (conditioned media)-induced H9C2 cell injury model and TGFß-stimulated cardiac fibroblast model were applied to determine the regulatory mechanisms of Cal. Results: In the in vivo experiments, echocardiography results showed that Cal significantly improved heart function. GO and reactome enrichment revealed that inflammation and fibrosis pathways are involved in the Cal-treated group. KEGG enrichment indicated that the PI3K-AKT pathway is enriched in the Cal-treated group. Further experiments proved that Cal alleviated cardiomyocyte inflammatory responses evidenced by downregulating the expressions of phosphorylated IκB kinase α/ß (p-IKKα/ß), phosphorylated nuclear factor kapa B (p-NFκB), and tumor necrosis factor α (TNFα). Besides, Cal effectively attenuated cardiac fibrosis through the inhibitions of expressions and depositions of collagen I and collagen III. In the in vitro experiments, the phosphatidylinositol three kinase (PI3K) inhibitor LY294002 could abrogate the anti-inflammation and antifibrosis therapeutic effects of Cal, demonstrating that the cardioprotective effects of Cal were mediated through upregulations of PI3K and serine/threonine kinase (AKT). Conclusion: Cal inhibited inflammation and fibrosis via activation of the PI3K-AKT pathway in H9C2 cells, fibroblasts, and heart failure in postacute myocardial infarction rats.

7.
Front Cell Dev Biol ; 10: 813370, 2022.
Article En | MEDLINE | ID: mdl-35223843

Doxorubicin (DOX) is one of the most effective chemotherapeutic agents. However, its clinical use is limited due to the severe risk of cardiotoxicity. One of the hallmarks of doxorubicin-induced cardiotoxicity (DICT) is the cascade of mitophagy deficiency-mitochondrial oxidative injury-apoptosis, while so far, there is no preventive strategy for alleviating DICT by targeting this molecular mechanism. Excitedly, based on our previous drug screen in DICT zebrafish model, harpagoside (HAR) showed dramatic anti-DICT efficacy superior to dexrazoxane (DXZ) only cardioprotectant approved by FDA. Therefore, its pharmacological effects and molecular mechanism on DICT mouse and rat cardiomyocytes were further discussed. In vivo, HAR significantly improved cardiac function and myocardial structural lesions with concomitant of diminished mitochondrial oxidative damage and recovered mitophagy flux. In parallel, HAR protected mitophagy and mitochondria homeostasis, and repressed apoptosis in vitro. Intriguingly, both nutlin-3 (agonist of p53) and Parkin siRNA reversed these protective effects of HAR. Additional data, including fluorescence colocalization of Parkin and MitoTracker and mt-Keima for the detection of mitophagy flux and coimmunoprecipitation of p53 and Parkin, showed that HAR promoted Parkin translocation to mitochondria and substantially restored Parkin-mediated mitophagy by inhibiting the binding of p53 and Parkin. Importantly, the results of the cell viability demonstrated that cardioprotective effect of HAR did not interfere with anticancer effect of DOX on MCF-7 and HepG2 cells. Our research documented p53-Parkin-mediated cascade of mitophagy deficiency-mitochondrial dyshomeostasis-apoptosis as a pathogenic mechanism and druggable pathway and HAR as a cardioprotection on DICT by acting on novel interaction between p53 and Parkin.

8.
Phytomedicine ; 99: 154009, 2022 May.
Article En | MEDLINE | ID: mdl-35217438

BACKGROUND: Mitophagy can regulate mitochondrial homeostasis, preserve energy metabolism and cardiomyocytes survival effectively to restrain the development of heart failure (HF). Danqi Pill (DQP), composed of the dry roots of Salvia miltiorrhiza Bunge and Panax notoginseng, is included in the 2015 national pharmacopeia and effective in the clinical treatment of coronary heart diseases. Our previous studies have approved that DQP exerted remarkable cardioprotective effects on HF. However, the effect and mechanism of DQP on mitophagy have not been proved yet. HYPOTHESIS/PURPOSE: We aim to explore whether DQP regulates mitophagy to protect against HF and to elucidate the in-depth mechanism. STUDY DESIGN: The HF rat model for evaluating DQP's efficacy was established with left anterior descending coronary artery ligation. The oxygen-glucose deprivation-reperfusion-induced cardiomyocyte model was conducted to clarify the potential mechanism of DQP. METHODS: The mitochondria-targeted fluorescent protein Keima (mt-Keima) was applied for detecting mitophagy flux. Co-immunofluorescence and co-immunoprecipitation were performed to detect protein co-localization. Flow cytometry for JC-1 and Annexin-FITC/PI staining was utilized for assessing mitochondrial activity and function. RESULTS: In vivo, medium dose of DQP (1.5 g/kg) notably improved cardiac function and inhibited cardiac apoptosis in HF rats. Co-immunofluorescent staining of LC3B and TOM20 showed that DQP restored mitophagy. Further co-immunoprecipitation demonstrated that DQP increased the co-localization of FUNDC1 with either ULK1 or PGAM5. In vitro, DQP markedly protected mitochondrial membrane potential damage, reduced cardiomyocytes apoptosis, decreased the level of mitochondrial ROS, and increased the ATP level. Parallel with the in vitro results, DQP increased the interaction of FUNDC1 and LC3B, while knockdown of FUNDC1 diminished the interaction. Besides, Mt-Keima signaling detection further confirmed that DQP significantly promoted mitophagy. Intriguingly, knockdown of ULK1 or PGAM5 separately weakened rather than eliminated these effects of DQP on FUNDC1-mediated mitophagy, mitochondrial homeostasis and energy metabolism. CONCLUSION: Our results demonstrated that DQP protected against HF by improving FUNDC1-mediated mitophagy to perverse energy metabolism through the coordinated regulation of ULK1 and PGAM5.

9.
Front Pharmacol ; 12: 773834, 2021.
Article En | MEDLINE | ID: mdl-34899332

Background: Doxorubicin (DOX), a broad-spectrum chemotherapy drug, has life-threatening cardiotoxicity. Therefore, searching cardioprotective drugs for DOX-induced cardiotoxicity (DIC) is urgently needed. Objectives: This study aimed to explore cardioprotective effect and specific mechanism by which Ferruginol (FGL) attenuated DIC in vivo and in vitro. Methods: We evaluated the cardioprotection of FGL and performed high-throughput RNA-Seq on a DIC mouse. Whereafter, multiple methods, including western blot, RT-qPCR, a transmission electron microscope, CO-IP, immunofluorescence, and other staining methods, and antagonist of SIRT1 and PGC-1α were utilized to confirm the cardioprotection and molecular mechanism of FGL. Results: FGL-exerted cardioprotection manifested as enhanced cardiac function and reduced structural damage and apoptosis. The transcriptome and other results revealed that FGL facilitated PGC-1α-mediated mitochondrial biogenesis and fatty acid oxidation (MB and FAO) by increasing the expression of PGC-1α and concurrently promoting the expression of SIRT1-enhancing deacetylase SIRT1 deacetylating and activating PGC-1α. Conclusions: These results documented that FGL exerted cardioprotective effects restoring MB&FAO via the SIRT1-PGC-1α axis.

10.
Molecules ; 26(5)2021 Mar 08.
Article En | MEDLINE | ID: mdl-33800264

Cardiotoxicity is one of the main side effects of doxorubicin (Dox) treatment. Dox could induce oxidative stress, leading to an opening of the mitochondrial permeability transition pore (mPTP) and apoptosis in cardiomyocytes. Previous studies have shown that Cryptotanshinone (Cts) has potential cardioprotective effects, but its role in Dox-induced cardiotoxicity (DIC) remains unknown. A Dox-stimulated H9C2 cell model was established. The effects of Cts on cell viability, reactive oxygen species (ROS), superoxide ion accumulation, apoptosis and mitochondrial membrane potential (MMP) were evaluated. Expressions of proteins in Akt-GSK-3ß pathway were detected by Western blot. An Akt inhibitor was applied to investigate the effects of Cts on the Akt-GSK-3ß pathway. The effects of Cts on the binding of p-GSK-3ß to ANT and the formation of the ANT-CypD complex were explored by immunoprecipitation assay. The results showed that Cts could increase cell viability, reduce ROS levels, inhibit apoptosis and protect mitochondrial membrane integrity. Cts increased phosphorylated levels of Akt and GSK-3ß. After cells were co-treated with an Akt inhibitor, the effects of Cts were abolished. An immunoprecipitation assay showed that Cts significantly increased GSK-3ß-ANT interaction and attenuated Dox-induced formation of the ANT-CypD complex, thereby inhibiting opening of the mPTP. In conclusion, Cts could ameliorate oxidative stress and apoptosis via the Akt-GSK-3ß-mPTP pathway.


Cardiotoxicity/drug therapy , Cardiotoxicity/prevention & control , Phenanthrenes/pharmacology , Animals , Apoptosis/drug effects , Cell Line, Tumor , Doxorubicin/adverse effects , Doxorubicin/pharmacology , Glycogen Synthase Kinase 3 beta/metabolism , Membrane Potential, Mitochondrial/drug effects , Mitochondrial Membrane Transport Proteins/drug effects , Mitochondrial Membranes/metabolism , Mitochondrial Permeability Transition Pore/metabolism , Myocytes, Cardiac/metabolism , Oxidative Stress/drug effects , Phenanthrenes/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Rats , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
11.
J Ethnopharmacol ; 266: 113404, 2021 Feb 10.
Article En | MEDLINE | ID: mdl-32976970

ETHNOPHARMACOLOGICAL RELEVANCE: Danqi Pill, composed of the root of Salvia miltiorrhiza Bunge and the root of Panax notoginseng, is effective in the clinical treatment of myocardial ischemia in coronary heart diseases. A number of studies have shown that autophagy plays an essential role in cardiac function and energy metabolism, and disordered autophagy is associated with the progression of heart failure. However, the effect and mechanism of Danqi pill on autophagy have not been reported yet. AIM OF THE STUDY: This study aims to elucidate whether Danqi pill restores autophagy to protect against HF and its potential mechanism. MATERIALS AND METHODS: Left anterior descending ligation was established to induce an HF rat model, H2O2-stimulated H9C2 cells model was conducted to clarify the effects and potential mechanism of Danqi pill. In vivo, Danqi pill (1.5 g/kg) were orally administered for four weeks and Fenofibrate (10 mg/kg) was selected as a positive group. In vitro, Danqi pill (10-200 µg/mL) was pre-cultured for 24 h and co-cultured with H2O2 stimulation for 4 h. Importantly, transmission electron microscopy and fluorescence GPF-mRFP-LC3 reporter system were combined to monitor autophagy flux. Furtherly, we utilized Compound C, a specific AMPK inhibitor, to validate whether the autophagy was mediated by AMPK-TSC2-mTOR pathway. RESULTS: Danqi pill significantly improved cardiac function and myocardial injury in HF rats. Intriguingly, Danqi pill potently regulated autophagy mainly by promoting the formation of autophagosomes in vivo. Further results demonstrated that expressions of p-AMPK (P < 0.001) and p-TSC2 (P < 0.001) in cardiac tissue were upregulated by Danqi pill, accompanied with downregulation of p-mTOR (P < 0.01) and p-ULK1(P < 0.01). In parallel with the vivo experiment, in vitro study indicated that Danqi pill dramatically restored autophagy flux and regulated expressions of critical autophagy-related molecules. Finally, utilization of Compound C abrogated the effects of Danqi pill on autophagy flux and the expressions of p-TSC2 (P < 0.05), p-mTOR (P < 0.01) and p-ULK1 (P < 0.05). CONCLUSION: Danqi pill could improve cardiac function and protect against cardiomyocytes injury by restoring autophagy via regulating the AMPK-TSC2-mTOR signaling pathway.


Autophagy/drug effects , Drugs, Chinese Herbal/pharmacology , Heart Failure/prevention & control , Myocardial Infarction/drug therapy , AMP-Activated Protein Kinases/metabolism , Animals , Cell Line , Disease Models, Animal , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/administration & dosage , Heart Failure/etiology , Male , Myocardial Infarction/complications , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Tuberous Sclerosis Complex 2 Protein/metabolism
...