Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(6): 114372, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38878289

RESUMEN

Emerging evidence highlights the regulatory role of paired-like (PRD-like) homeobox transcription factors (TFs) in embryonic genome activation (EGA). However, the majority of PRD-like genes are lost in rodents, thus prompting an investigation into PRD-like TFs in other mammals. Here, we showed that PRD-like TFs were transiently expressed during EGA in human, monkey, and porcine fertilized embryos, yet they exhibited inadequate expression in their cloned embryos. This study, using pig as the research model, identified LEUTX as a key PRD-like activator of porcine EGA through genomic profiling and found that LEUTX overexpression restored EGA failure and improved preimplantation development and cloning efficiency in porcine cloned embryos. Mechanistically, LEUTX opened EGA-related genomic regions and established histone acetylation via recruiting acetyltransferases p300 and KAT2A. These findings reveal the regulatory mechanism of LEUTX to govern EGA in pigs, which may provide valuable insights into the study of early embryo development for other non-rodent mammals.


Asunto(s)
Genoma , Técnicas de Transferencia Nuclear , Animales , Porcinos , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Desarrollo Embrionario/genética , Embrión de Mamíferos/metabolismo , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Acetilación , Clonación de Organismos/métodos , Histonas/metabolismo , Blastocisto/metabolismo
2.
Reproduction ; 166(3): 187-197, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37310899

RESUMEN

In brief: Normal gene expression during early embryonic development and in the placenta is crucial for a successful pregnancy. Nicotine can disrupt normal gene expression during development, leading to abnormal embryonic and placental development. Abstract: Nicotine is a common indoor air pollutant that is present in cigarette fumes. Due to its lipophilic nature, nicotine can rapidly transport through membrane barriers and spread throughout the body, which can lead to the development of diseases. However, the impact of nicotine exposure during early embryonic development on subsequent development remains elusive. In this study, we found that nicotine significantly elevated reactive oxygen species, DNA damage and cell apoptosis levels with the decrease of blastocyst formation during early embryonic development. More importantly, nicotine exposure during early embryonic development increased placental weight and disrupted placental structure. In molecular level, we also observed that nicotine exposure could specifically cause the hypermethylation of Phlda2 promoter (a maternally expressed imprinted gene associated with placental development) and reduce the mRNA expression of Phlda2. By RNA sequencing analysis, we demonstrated that nicotine exposure affected the gene expression and excessive activation of the Notch signaling pathway thereby affecting placental development. Blocking the Notch signaling pathway by DAPT treatment could recover abnormal placental weight and structure induced by nicotine exposure. Taken together, this study indicates that nicotine causes the declining quality of early embryos and leads to placental abnormalities related to over-activation of the Notch signaling pathway.


Asunto(s)
Placenta , Placentación , Embarazo , Femenino , Humanos , Placenta/metabolismo , Nicotina/toxicidad , Nicotina/metabolismo , Proteínas Nucleares/metabolismo , Transducción de Señal
3.
Environ Pollut ; 331(Pt 1): 121856, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37211227

RESUMEN

Arsenite is commonly used as an insecticide, antiseptic and herbicide. It can enter the food chain via through soil contamination, and harm human health, including the reproductive systems. Early embryos, as the initial stage of mammalian life, are very sensitive to the environmental toxins and pollutants. However, whether and how arsenite disturbs the early embryo development remains unclear. Our study used mouse early embryos as a model and revealed that arsenite exposure did not cause reactive oxygen species production, DNA damage or apoptosis. However, arsenite exposure arrested embryonic development at the 2-cell stage by altering gene expression patterns. The transcriptional profile in the disrupted embryos showed abnormal maternal-to-zygote transition (MZT). More importantly, arsenite exposure attenuated H3K27ac modification enrichment at the promoter region of Brg1, a key gene for MZT, which inhibited its transcription, and further affected MZT and early embryonic development. In conclusion our study highlights arsenite exposure affects MZT by reducing the enrichment of H3K27ac on the embryonic genome, and ultimately induces early embryonic development arrest at the 2-cell stage.


Asunto(s)
Arsenitos , Cigoto , Embarazo , Femenino , Humanos , Animales , Ratones , Cigoto/metabolismo , Arsenitos/toxicidad , Arsenitos/metabolismo , Desarrollo Embrionario/genética , Mamíferos/genética , Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica
4.
Adv Sci (Weinh) ; 9(23): e2200057, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35717671

RESUMEN

Early embryos undergo extensive epigenetic reprogramming to achieve gamete-to-embryo transition, which involves the loading and removal of histone variant H2A.Z on chromatin. However, how does H2A.Z regulate gene expression and histone modifications during preimplantation development remains unrevealed. Here, by using ultra-low-input native chromatin immunoprecipitation and sequencing, the genome-wide distribution of H2A.Z is delineated in mouse oocytes and early embryos. These landscapes indicate that paternal H2A.Z is removed upon fertilization, followed by unbiased accumulation on parental genomes during zygotic genome activation (ZGA). Remarkably, H2A.Z exhibits hierarchical accumulation as different peak types at promoters: promoters with double H2A.Z peaks are colocalized with H3K4me3 and indicate transcriptional activation; promoters with a single H2A.Z peak are more likely to occupy bivalent marks (H3K4me3+H3K27me3) and indicate development gene suppression; promoters with no H2A.Z accumulation exhibit persisting gene silencing in early embryos. Moreover, H2A.Z depletion changes the enrichment of histone modifications and RNA polymerase II binding at promoters, resulting in abnormal gene expression and developmental arrest during lineage commitment. Furthermore, similar transcription and accumulation patterns between mouse and porcine embryos indicate that a dual role of H2A.Z in regulating the epigenome required for proper gene expression is conserved during mammalian preimplantation development.


Asunto(s)
Código de Histonas , Histonas , Animales , Cromatina/genética , Cromatina/metabolismo , Embrión de Mamíferos/metabolismo , Código de Histonas/genética , Histonas/genética , Histonas/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Ratones , Procesamiento Proteico-Postraduccional
6.
Cell Death Dis ; 12(12): 1085, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34785659

RESUMEN

Nuclear transfer embryonic stem cells (ntESCs) hold enormous promise for individual-specific regenerative medicine. However, the chromatin states of ntESCs remain poorly characterized. In this study, we employed ATAC-seq and Hi-C techniques to explore the chromatin accessibility and three-dimensional (3D) genome organization of ntESCs. The results show that the chromatin accessibility and genome structures of somatic cells are re-arranged to ESC-like states overall in ntESCs, including compartments, topologically associating domains (TADs) and chromatin loops. However, compared to fertilized ESCs (fESCs), ntESCs show some abnormal openness and structures that have not been reprogrammed completely, which impair the differentiation potential of ntESCs. The histone modification H3K9me3 may be involved in abnormal structures in ntESCs, including incorrect compartment switches and incomplete TAD rebuilding. Moreover, ntESCs and iPSCs show high similarity in 3D genome structures, while a few differences are detected due to different somatic cell origins and reprogramming mechanisms. Through systematic analyses, our study provides a global view of chromatin accessibility and 3D genome organization in ntESCs, which can further facilitate the understanding of the similarities and differences between ntESCs and fESCs.


Asunto(s)
Cromatina/metabolismo , Células Madre Embrionarias/metabolismo , Técnicas de Transferencia Nuclear/normas , Animales , Diferenciación Celular , Femenino , Humanos , Ratones
7.
Mol Cell ; 79(2): 234-250.e9, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32579944

RESUMEN

Somatic cell nuclear transfer (SCNT) can reprogram a somatic nucleus to a totipotent state. However, the re-organization of 3D chromatin structure in this process remains poorly understood. Using low-input Hi-C, we revealed that, during SCNT, the transferred nucleus first enters a mitotic-like state (premature chromatin condensation). Unlike fertilized embryos, SCNT embryos show stronger topologically associating domains (TADs) at the 1-cell stage. TADs become weaker at the 2-cell stage, followed by gradual consolidation. Compartments A/B are markedly weak in 1-cell SCNT embryos and become increasingly strengthened afterward. By the 8-cell stage, somatic chromatin architecture is largely reset to embryonic patterns. Unexpectedly, we found cohesin represses minor zygotic genome activation (ZGA) genes (2-cell-specific genes) in pluripotent and differentiated cells, and pre-depleting cohesin in donor cells facilitates minor ZGA and SCNT. These data reveal multi-step reprogramming of 3D chromatin architecture during SCNT and support dual roles of cohesin in TAD formation and minor ZGA repression.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Cromatina/fisiología , Proteínas Cromosómicas no Histona/fisiología , Técnicas de Transferencia Nuclear , Cigoto/fisiología , Animales , Línea Celular , Núcleo Celular , Ensamble y Desensamble de Cromatina , Biología Computacional/métodos , Conjuntos de Datos como Asunto , Desarrollo Embrionario , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Cohesinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...