Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38733013

RESUMEN

During the operation of space gravitational wave detectors, the constellation configuration formed by three satellites gradually deviates from the ideal 60° angle due to the periodic variations in orbits. To ensure the stability of inter-satellite laser links, active compensation of the breathing angle variation within the constellation plane is achieved by rotating the optical subassembly through the telescope pointing mechanism. This paper proposes a high-performance robust composite control method designed to enhance the robust stability, disturbance rejection, and tracking performance of the telescope pointing system. Specifically, based on the dynamic model of the telescope pointing mechanism and the disturbance noise model, an H∞ controller has been designed to ensure system stability and disturbance rejection capabilities. Meanwhile, employing the method of an H∞ norm optimized disturbance observer (HODOB) enhances the nonlinear friction rejection ability of the telescope pointing system. The simulation results indicate that, compared to the traditional disturbance observer (DOB) design, utilizing the HODOB method can enhance the tracking accuracy and pointing stability of the telescope pointing system by an order of magnitude. Furthermore, the proposed composite control method improves the overall system performance, ensuring that the stability of the telescope pointing system meets the 10 nrad/Hz1/2 @0.1 mHz~1 Hz requirement specified for the TianQin mission.

2.
Thorac Cancer ; 15(16): 1279-1286, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38664975

RESUMEN

BACKGROUND:  This study aims to analyze breast cancer burden attributable to high body mass index (BMI) and high fasting plasma glucose (FPG) in China from 1990 to 2019. METHODS: Data were obtained from the Global Burden of Disease (GBD) study 2019. Deaths and disability-adjusted life years (DALYs) were used for attributable burden, and age-period-cohort (APC) model was used to evaluate the independent effects of age, period and birth cohort. RESULTS: In 2019, the age-standardized mortality and DALY rates of breast cancer attributable to high BMI were 1.107 (95% UI: 0.311, 2.327) and 29.990 (8.384, 60.713) per 100 000, and mortality and DALY rates attributable to high FPG were 0.519 (0.095, 1.226) and 13.662 (2.482, 32.425) per 100 000. From 1990 to 2019, the age-standardized mortality and DALY rates of breast cancer attributable to high BMI increased by 1.192% and 1.180%, and the trends of high FPG were not statistically significant. The APC results showed that the age effects of high BMI and high FPG-mortality and DALY rates increased, with the highest rates in the age group over 80 years. The birth cohort effects of high BMI showed "inverted V" shapes, while high FPG showed downward trends. CONCLUSIONS: Age was the main reason for the increase of attributable burden, and postmenopausal women were the high-risk groups. Therefore, targeted prevention measures should be developed to improve postmenopausal women's awareness and effectively reduce the prevalence of obesity and diabetes, thereby reducing the breast cancer burden caused by metabolic factors in China.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/mortalidad , China/epidemiología , Persona de Mediana Edad , Adulto , Anciano , Índice de Masa Corporal , Factores de Riesgo , Estudios Epidemiológicos , Glucemia/metabolismo , Carga Global de Enfermedades , Pueblos del Este de Asia
3.
Appl Opt ; 63(7): 1815-1821, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38437285

RESUMEN

The telescope is vital for accurate gravitational wave detection in the TianQin project. It must meet criteria like a geometric tilt-to-length (TTL) coupling noise c o e f f i c i e n t≤0.02√2n m/µr a d and wavefront R M S≤λ/30. Analyzing the pupil aberration's impact on geometric TTL noise, we devised an optimization method using the chief ray spot diagram's standard deviation. Implementing this in Zemax with a ZPL macro, we designed an optical system meeting TianQin's requirements. The system has a maximum geometric TTL noise coefficient of 0.0250 nm/µrad over the science FOV and a wavefront RMS of 0.0111λ, confirming the method's feasibility.

4.
Appl Opt ; 63(6): 1488-1494, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38437360

RESUMEN

The optical path length stability of the off-axis four-reflection telescope is one of the key technical indicators for the TianQin gravitational wave detection system. In the MHz observation band, the telescope must exhibit an optical path length stability of 0.4p m/H z 1/2. As a feasible solution, the optical path length stability measurement of the off-axis four-reflection telescope based on the Pound-Drever-Hall (PDH) technique imposes stringent requirements on the alignment of the off-axis resonant cavity (ORC). Taking the off-axis two-reflection prototype as the research object, we propose a Monte Carlo analysis-based method for ORC alignment precision analysis. By considering misalignment as an intermediate function, we establish a relationship between the coupling efficiency of the ORC and the wavefront aberration of the telescope. The research results show that by considering the combined effects of multiple misalignment couplings of the primary and secondary mirrors, when the detected telescope wavefront aberration is better than 0.068λ (λ=1064n m) with a probability of 98%, the ORC coupling efficiency can achieve greater than 40% with a probability of 97.13%, which can be used as the main reference indicator for system misalignment analysis. This method simplifies the alignment difficulty of the target under test and can provide alignment reference for subsequent resonant cavities with internal off-axis telescopes.

6.
Theriogenology ; 212: 129-139, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37717516

RESUMEN

Understanding the mechanisms behind porcine primordial germ cell like cells (pPGCLCs) development, differentiation, and gametogenesis is crucial in the treatment of infertility. In this study, SOX9+ skin derived stem cells (SOX9+ SDSCs) were isolated from fetal porcine skin and a high-purity SOX9+ SDSCs population was obtained. The SOX9+ SDSCs were induced to transdifferentiate into PGCLCs during 8 days of cultured. The results of RNA-seq, western blot and immunofluorescence staining verified SDSCs have the potential to transdifferentiate into PGCLCs from aspects of transcription factor activation, germ layer differentiation, energy metabolism, and epigenetic changes. Both adherent and suspended cells were collected. The adherent cells were found to be very similar to early porcine primordial germ cells (pPGCs). The suspended cells resembled late stage pPGCs and had a potential to enter meiotic process. This SDSCs culture-induced in vitro model is expected to provide suitable donor cells for stem cell transplantation in the future.


Asunto(s)
Células Germinativas , Células Madre , Porcinos , Animales , Diferenciación Celular/fisiología , Células Germinativas/metabolismo , Gametogénesis , Células Cultivadas
7.
J Hazard Mater ; 459: 132226, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37549580

RESUMEN

Zearalenone (ZEN) is a widespread and transgenerational toxicant that can cause serious reproductive health risks, which poses a potential threat to global agricultural production and human health; its estrogenic activity can lead to reproductive toxicity through the induction of granulosa cell apoptosis. Herein, comparative transcriptome analysis, single-cell transcriptome analysis, and weighted gene co-expression network analysis (WGCNA) combined with gene knockout in vivo and RNA interference in vitro were used to comprehensively describe the damage caused by ZEN exposure on ovarian granulosa cells. Comparative transcriptome analysis and WGCNA suggested that the tumor necrosis factor (TNF)-α-mediated mitogen-activated protein kinase 7 (MAP2K7)/ AKT serine/threonine kinase 2 (AKT2) axis was disordered after ZEN exposure in porcine granulosa cells (pGCs) and mouse granulosa cells (mGCs). In vivo gene knockout and in vitro RNA interference verified that TNF-α-mediated MAP2K7/AKT2 was the guiding signal in ZEN-induced apoptosis in pGCs and mGCs. Moreover, single-cell transcriptome analysis showed that ZEN exposure could induce changes in the TNF signaling pathway in offspring. Overall, we concluded that the TNF-α-mediated MAP2K7/AKT2 axis was the main signaling pathway of ZEN-induced apoptosis in pGCs and mGCs. This work provides new insights into the mechanism of ZEN toxicity and provides new potential therapeutic targets for the loss of livestock and human reproductive health caused by ZEN.


Asunto(s)
Zearalenona , Animales , Femenino , Ratones , Apoptosis , MAP Quinasa Quinasa 7 , Proteína Quinasa 7 Activada por Mitógenos , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal , Porcinos , Transcriptoma , Factor de Necrosis Tumoral alfa/genética , Zearalenona/toxicidad
8.
Soft Matter ; 17(13): 3594-3602, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33416065

RESUMEN

When a capillary channel with corners is wetted by a fluid, there are regions where the fluid fills the whole cross-section and regions where only the corners are filled by the fluid. The fluid fraction of the partially-filled region, s*, is an important quantity related to the capillary pressure. We calculate the value of s* for channels with a cross-section slightly deviated from a rectangle: the height is larger in the center than those on the two short sides. We find that a small change in the cross-section geometry leads to a huge change of s*. This result is consistent with experimental observations.

9.
Materials (Basel) ; 12(19)2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-31557868

RESUMEN

Since invented in 2003, rock-filled concrete (RFC) has gained much attention and has been successfully applied in more and more civil and hydraulic projects in China. This study developed a numerical framework to simulate self-compacting concrete (SCC) flows in the voids among rocks of RFC, which couples the lattice Boltzmann method and discrete element method (DEM). The multiple-relaxation-time scheme is used to simulate self-compacting mortar (SCM) for better stability while the motion of coarse aggregates in SCC is simulated with DEM. The immersed moving boundary method is incorporated to deal with the interactions between coarse aggregates and SCM. After validation, the coupled framework is applied to study SCC flows in a single channel and in porous media with multi-channels. A passing factor PF was proposed and calculated to describe quantitatively the passing ability of SCC through a single channel. The study found that jamming of SCC occurs when the ratio Ar of the gap width to particle diameter is smaller than 2.0 and the jamming risk increases with solid particles fraction while the passing ability has a weak relation with the pressure gradient. Further, SCC flow is self-tuning in porous media with multi-channels and it is prone to go through larger or wider gaps. Exceeded existence of narrow gaps will significantly increase the jamming risk.

10.
Sci Rep ; 5: 9652, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25951049

RESUMEN

Mesoscopic structures form in dense granular materials due to the self-organisation of the constituent particles. These structures have internal structural degrees of freedom in addition to the translational degree of freedom. The resultant granular elasticity, which exhibits intrinsic variations and inevitable relaxation, is a key quantity that accounts for macroscopic solid- or fluid-like properties and the transitions between them. In this work, we propose a potential energy landscape (PEL) with local stable basins and low elastic energy barriers to analyse the nature of granular elasticity. A function for the elastic energy density is proposed for stable states and is further calibrated with ultrasonic measurements. Fluctuations in the elastic energy due to the evolution of internal structures are proposed to describe a so-called configuration temperature T(c) as a counterpart of the classical kinetic granular temperature T(k) that is attributed to the translational degrees of freedom. The two granular temperatures are chosen as the state variables, and a fundamental equation is established to develop non-equilibrium thermodynamics for granular materials. Due to the relatively low elastic energy barrier in the PEL, granular elasticity relaxes more under common mechanical loadings, and a simple model based on mean-field theory is developed to account for this behaviour.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(5 Pt 1): 051304, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-23004747

RESUMEN

Granular solid hydrodynamics (GSH) is a broad-ranged continual mechanical description of granular media capable of accounting for static stress distributions, yield phenomena, propagation and damping of elastic waves, the critical state, shear band, and fast dense flow. An important input of GSH is an expression for the elastic energy needed to deform the grains. The original expression, though useful and simple, has some drawbacks. Therefore a slightly more complicated expression is proposed here that eliminates three of them: (1) The maximal angle at which an inclined layer of grains remains stable is increased from 26^{∘} to the more realistic value of 30^{∘}. (2) Depending on direction and polarization, transverse elastic waves are known to propagate at slightly different velocities. The old expression neglects these differences, the new one successfully reproduces them. (3) Most importantly, the old expression contains only the Drucker-Prager yield surface. The new one contains in addition those named after Coulomb, Lade-Duncan, and Matsuoka-Nakai-realizing each, and interpolating between them, by shifting a single scalar parameter.

12.
Sci China C Life Sci ; 50(1): 120-4, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17393092

RESUMEN

The biological patterning of the Drosophila retina in vivo has striking resemblance to liquid bubbles, in which the surface mechanics due to N-cadherin within a sub-group of retina cells can be mimicked by surface tension. In this work, the aggregating patterns were reasonably simplified into 2D clusters consisting of 2-6 identical bubbles confined within a shrinking boundary. By using a hybrid fluid dynamics model proposed for liquid foams, the aggregating process of 2-6 retina cells was studied. Assuming the minimal perimeter for patterning cells to be the condition of stability patterns, the stable converged patterns we simulated in this work are the same as the experimental observations. More importantly, a new pattern of 6 cells was obtained which was found physically more stable than the other two reported by Hayashi and Carthew. Aggregating perimeters of cells, i.e. the surface energy, showed a good linear fit with the cell numbers.


Asunto(s)
Tipificación del Cuerpo/fisiología , Simulación por Computador , Drosophila/embriología , Drosophila/crecimiento & desarrollo , Modelos Biológicos , Retina/embriología , Retina/crecimiento & desarrollo , Animales , Drosophila/citología , Retina/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA