Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.759
1.
Diabetes Metab Syndr ; 18(5): 103037, 2024 May 08.
Article En | MEDLINE | ID: mdl-38744090

AIM: To evaluate the potential of the combined individual vascular histopathological lesion and serum 25-hydroxy vitamin D [25(OH)D] level as predictors of outcomes in patients with diabetes and chronic kidney disease. METHODS: A total of 190 patients with type 2 diabetes and kidney disease stages 1-4 were retrospectively included. Kaplan-Meier analysis and the log-rank test were performed to assess renal survival differences. And the time-dependent receiver operating characteristic analyses were used to characterize the predictive accuracy. Hazard ratios for vascular lesion scores and 25(OH)D levels with renal outcomes were estimated using Cox proportional hazards regression models with follow-up time. RESULTS: Over a median follow-up of 23.78 (12.61, 37.14) months, 71 patients (37.4 %) experienced the renal outcomes. Enrolled patients with more severe vascular lesions had worse kidney function, heavier proteinuria, lower serum 25(OH)D levels, and higher prevalence of composite kidney outcomes. Baseline serum 25(OH)D was a significant independent risk factor for vascular lesion scores. The effect of serum 25(OH)D level on kidney prognosis was more pronounced in males and those with more exacerbated vascular lesions (score 2). The severity of vascular lesions and serum 25(OH)D levels were associated with unfavorable kidney outcomes. Accordingly, further time-dependent receiver operating characteristic curves confirmed that combined 25(OH)D level and vascular lesion score had a stable and reliable performance in renal outcomes prediction at short and long-term follow-up times. CONCLUSIONS: 25(OH)D level and vascular lesion scores in kidney histopathology could serve as a useful risk-stratification tool for predicting renal progression in patients with type 2 diabetes.

2.
J Chem Phys ; 160(19)2024 May 21.
Article En | MEDLINE | ID: mdl-38747431

In this paper, we present a combined experimental and theoretical study that explored the initial sticking of water on cooled surfaces. Specifically, these ultra-high vacuum gas-surface scattering experiments utilized supersonic molecular beam techniques in conjunction with a cryogenically cooled highly oriented pyrolytic graphite crystal, giving control over incident kinematic conditions. The D2O translational energy spanning 300-750 meV, the relative D2O flux, and the incident angle could all be varied independently. Three different experimental measurements were made. One involved measuring the total amount of D2O scattering as a function of surface temperature to determine the onset of sticking under non-equilibrium gas-surface collision conditions. Another measurement used He specular scattering to assess structural and coverage information for the interface during D2O adsorption. Finally, we used time-of-flight (TOF) measurements of the scattered D2O to determine how energy is exchanged with the graphite surface at surface temperatures above and near the conditions needed for gaseous condensation. For comparison and elaboration of the roles that internal degrees of freedom play in this process, we also did similar TOF measurements using another mass 20 incident particle, atomic neon. Enriching this study are precise molecular dynamics simulations that elaborate on gas-surface energy transfer and the roles of molecular degrees of freedom in gas-surface collisional energy exchange processes. This study furthers our fundamental understanding of energy exchange and the onset of sticking and ultimately gaseous condensation for gas-surface encounters occurring under high-velocity flows.

3.
Heliyon ; 10(9): e29825, 2024 May 15.
Article En | MEDLINE | ID: mdl-38726132

This paper explores methodologies to enhance the integration of a green supply chain circular economy within smart cities by incorporating machine learning technology. To refine the precision and effectiveness of the prediction model, the gravitational algorithm is introduced to optimize parameter selection in the support vector machine model. A nationwide prediction model for green supply chain economic development efficiency is meticulously constructed by leveraging public economic, environmental, and demographic data. A comprehensive empirical analysis follows, revealing a noteworthy reduction in mean squared error and root mean squared error with increasing iterations, reaching a minimum of 0.007 and 0.103, respectively-figures that are the lowest among all considered machine learning models. Moreover, the mean absolute percentage error value is remarkably low at 0.0923. The data illustrate a gradual decline in average prediction error and standard deviation throughout the model optimization process, indicative of both model convergence and heightened prediction accuracy. These results underscore the significant potential of machine learning technology in optimizing supply chain and circular economy management. The paper provides valuable insights for decision-makers and researchers navigating the landscape of sustainable development.

4.
BMC Cancer ; 24(1): 576, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730348

OBJECTIVE: Nasopharyngeal adenoid cystic carcinoma (NACC) is a rare malignancy with special biological features. Controversies exist regarding the treatment approach and prognostic factors in the IMRT era. This study aimed to evaluate the long-term outcomes and management approaches in NACC. METHODS: Fifty patients with NACC at our institution between 2010 and 2020 were reviewed. Sixteen patients received primary radiotherapy (RT), and 34 patients underwent primary surgery. RESULTS: Between January 2010 and October 2020, a total of 50 patients with pathologically proven NACC were included in our analysis. The median follow-up time was 58.5 months (range: 6.0-151.0 months). The 5-year overall survival rate (OS) and progression-free survival rate (PFS) were 83.9% and 67.5%, respectively. The 5-year OS rates of patients whose primary treatment was surgery and RT were 90.0% and 67.3%, respectively (log-rank P = 0.028). The 5-year PFS rates of patients whose primary treatment was surgery or RT were 80.8% and 40.7%, respectively (log-rank P = 0.024). Multivariate analyses showed that nerve invasion and the pattern of primary treatment were independent factors associated with PFS. CONCLUSIONS: Due to the relative insensitivity to radiation, primary surgery seemed to provide a better chance of disease control and improved survival in NACC. Meanwhile, postoperative radiotherapy should be performed for advanced stage or residual tumours. Cranial nerve invasion and treatment pattern might be important factors affecting the prognosis of patients with NACC.


Carcinoma, Adenoid Cystic , Nasopharyngeal Neoplasms , Radiotherapy, Intensity-Modulated , Humans , Carcinoma, Adenoid Cystic/radiotherapy , Carcinoma, Adenoid Cystic/mortality , Carcinoma, Adenoid Cystic/pathology , Carcinoma, Adenoid Cystic/surgery , Male , Female , Radiotherapy, Intensity-Modulated/methods , Middle Aged , Adult , Nasopharyngeal Neoplasms/radiotherapy , Nasopharyngeal Neoplasms/mortality , Nasopharyngeal Neoplasms/pathology , Aged , Retrospective Studies , Nasopharyngeal Carcinoma/radiotherapy , Nasopharyngeal Carcinoma/mortality , Nasopharyngeal Carcinoma/pathology , Young Adult , Prognosis , Survival Rate , Treatment Outcome , Follow-Up Studies , Adolescent , Progression-Free Survival
5.
Article En | MEDLINE | ID: mdl-38775474

The transcription factors (TFs) myocardin (MyoCD) and ETS Like-1 protein (Elk-1) competitively bind to serum response factor (SRF) and control myogenic- and mitogenic-related gene expression in smooth muscle, respectively. Their functions are therefore mutually inhibitory, which result in a contractile versus proliferative phenotype dichotomy. Airway smooth muscle cell (ASMC) phenotype alterations occur in various inflammatory airway diseases, promoting pathological remodelling and contributing to airflow obstruction. We characterized MyoCD and Elk-1 interactions and their roles in phenotype determination in human ASMCs. MyoCD overexpression in ASMCs increased smooth muscle gene expression, force generation, and partially restored the loss of smooth muscle protein associated with prolonged culturing, while inhibiting Elk-1 transcriptional activities and proliferation induced by epidermal growth factor (EGF). However, MyoCD overexpression failed to suppress these responses induced by fetal bovine serum (FBS) as FBS also upregulated SRF expression to a degree that allowed unopposed function of both TFs. Inhibition of the RhoA pathway reversed said SRF changes, allowing inhibition of Elk-1 by MyoCD overexpression and suppressing FBS-mediated contractile protein gene upregulation. Our study confirmed that MyoCD in increased abundance can competitively inhibit Elk-1 function. However, SRF upregulation permits a dual contractile-proliferative ASMC phenotype, anticipated to exacerbate pathological alterations, whereas therapies targeting SRF may inhibit both pathological ASMC proliferation and contractile protein gene expression.

6.
Mol Plant Pathol ; 25(5): e13464, 2024 May.
Article En | MEDLINE | ID: mdl-38695733

Many plant pathogens secrete effector proteins into the host plant to suppress host immunity and facilitate pathogen colonization. The necrotrophic pathogen Sclerotinia sclerotiorum causes severe plant diseases and results in enormous economic losses, in which secreted proteins play a crucial role. SsCVNH was previously reported as a secreted protein, and its expression is significantly upregulated at 3 h after inoculation on the host plant. Here, we further demonstrated that deletion of SsCVNH leads to attenuated virulence. Heterologous expression of SsCVNH in Arabidopsis enhanced pathogen infection, inhibited the host PAMP-triggered immunity (PTI) response and increased plant susceptibility to S. sclerotiorum. SsCVNH interacted with class III peroxidase AtPRX71, a positive regulator of innate immunity against plant pathogens. SsCVNH could also interact with other class III peroxidases, thus reducing peroxidase activity and suppressing plant immunity. Our results reveal a new infection strategy employed by S. sclerotiorum in which the fungus suppresses the function of class III peroxidases, the major component of PTI to promote its own infection.


Arabidopsis , Ascomycota , Fungal Proteins , Plant Diseases , Plant Immunity , Ascomycota/pathogenicity , Plant Diseases/microbiology , Virulence , Arabidopsis/microbiology , Arabidopsis/immunology , Plant Immunity/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Peroxidases/metabolism , Peroxidases/genetics
7.
Iran J Public Health ; 53(1): 1-11, 2024 Jan.
Article En | MEDLINE | ID: mdl-38694869

Background: Influenza is the first infectious disease that implements global monitoring and is one of the major public health issues in the world. Air pollutants have become an important global public health issue, in recent years, and much epidemiological and clinical evidence has shown that air pollutants are associated with respiratory diseases. Methods: We comprehensively searched articles published up to 15 November 2022 in PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), Database of Chinese sci-tech periodicals, and Wanfang Database. The search strategies were based on keyword combinations related to influenza and air pollutants. The air pollutants included particulate matter (PM2.5, PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), and ozone (O3). Meta-analysis was performed using the R programming language (R4.2.1). Results: A total of 2926 records were identified and 1220 duplicates were excluded. Finally, 19 studies were included in the meta-analysis according to inclusion and exclusion criteria. We observed a significant association between partial air pollutants (PM2.5, NO2, PM10 and SO2) and the incidence risk of influenza. The RRs were 1.0221 (95% CI: 1.0093~1.0352), 1.0395 (95% CI: 1.0131~1.0666), 1.007 (95% CI: 1.0009~1.0132), and 1.0352 (95% CI. 1.0076~1.0635), respectively. However, there was no significant relationship between CO and O3 exposure and influenza, and the RRs were 1.2272 (95% CI: 0.9253~1.6275) and 1.0045 (95% CI: 0.9930~1.0160), respectively. Conclusion: Exposure to PM2.5, NO2, PM10, and SO2 was significantly associated with influenza, which may be risk factors for influenza. The association of CO and O3 with influenza needs further investigation.

8.
Sci Adv ; 10(18): eadn3240, 2024 May 03.
Article En | MEDLINE | ID: mdl-38701205

The chiral induced spin selectivity (CISS) effect, in which the structural chirality of a material determines the preference for the transmission of electrons with one spin orientation over that of the other, is emerging as a design principle for creating next-generation spintronic devices. CISS implies that the spin preference of chiral structures persists upon injection of pure spin currents and can act as a spin analyzer without the need for a ferromagnet. Here, we report an anomalous spin current absorption in chiral metal oxides that manifests a colossal anisotropic nonlocal Gilbert damping with a maximum-to-minimum ratio of up to 1000%. A twofold symmetry of the damping is shown to result from differential spin transmission and backscattering that arise from chirality-induced spin splitting along the chiral axis. These studies reveal the rich interplay of chirality and spin dynamics and identify how chiral materials can be implemented to direct the transport of spin current.

9.
Small ; : e2401658, 2024 May 01.
Article En | MEDLINE | ID: mdl-38693074

The formation process of biofouling is actually a 4D process with both spatial and temporal dimensions. However, most traditional antifouling coatings, including slippery liquid-infused porous surface (SLIPS), are limited to performing antifouling process in the 2D coating plane. Herein, inspired by the defensive behavior of sea anemones' wielding toxic tentacles, a "4D SLIPS" (FSLIPS) is constructed with biomimetic cilia via a magnetic field self-assembly method for antifouling. The bionic cilia move in 3D space driven by an external magnetic field, thereby preventing the attachment of microorganisms. The FSLIPS releases the gaseous antifoulant (nitric oxide) at 1D time in response to light, thereby achieving a controllable biocide effect on microorganisms. The FSLIPS regulates the movement of cilia via the external magnetic field, and controls the release of NO overtime via the light response, so as to adjust the antifouling modes on demand during the day or night. The light/magnetic response mechanism endow the FSLIPS with the ability to adjust the antifouling effect in the 4D dimension of 1D time and 3D space, effectively realizing the intelligence, multi-dimensionality and precision of the antifouling process.

11.
bioRxiv ; 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38712095

The architecture of cell culture-two-dimensional (2D) versus three-dimensional (3D)-significantly impacts various cellular factors, including cell-cell interactions, nutrient and oxygen gradients, metabolic activity, and gene expression profiles. This can result in different cellular responses during cancer drug treatment, with 3D-cultured cells often exhibiting higher resistance to chemotherapeutic drugs. While various genetic and proteomic analyses have been employed to investigate the underlying mechanisms of this increased resistance, complementary techniques that provide experimental evidence of spatial molecular profiling data are limited. Stimulated Raman scattering (SRS) microscopy has demonstrated its capability to measure both intracellular drug uptake and growth inhibition. In this work, we applied three-band SRS imaging to 2D and 3D cell cultures and provided a comparative analysis of drug uptake and response with the goal of understanding whether the difference in drug uptake explains the drug resistance in 3D culture compared to 2D. Our investigations revealed that despite similar intracellular drug levels in 2D and 3D A549 cells during lapatinib treatment, the growth of 3D spheroids is less impacted, supporting an enhanced drug tolerance in the 3D microenvironment. We further elucidated drug penetration patterns and the resulting heterogeneous cellular responses across different spheroid layers. Additionally, we investigated the role of the extracellular matrix in modulating drug delivery and cell response, and we discovered that limited drug penetration in 3D could also contribute to lower drug response. Our study provides valuable insights into the intricate mechanisms of increased drug resistance in 3D tumor models during cancer drug treatments.

12.
Acta Pharmacol Sin ; 2024 May 15.
Article En | MEDLINE | ID: mdl-38750075

Chimeric antigen receptor-expressing T (CAR-T) cells induce robust antitumor responses in patients with hematologic malignancies. However, CAR-T cells exhibit only limited efficacy against solid tumors such as hepatocellular carcinoma (HCC), partially due to their limited expansion and persistence. CD8+ T cells, as key components of the adaptive immune response, play a central role in antitumor immunity. Aerobic glycolysis is the main metabolic feature of activated CD8+ T cells. In the tumor microenvironment, however, the uptake of large amounts of glucose by tumor cells and other immunosuppressive cells can impair the activation of T cells. Only when tumor-infiltrating lymphocytes (TILs) in the tumor microenvironment have a glycolytic advantage might the effector function of T cells be activated. Glucose transporter type 1 (GLUT1) and acylglycerol kinase (AGK) can boost glycolytic metabolism and activate the effector function of CD8+ T cells, respectively. In this study, we generated GPC3-targeted CAR-T cells overexpressing GLUT1 or AGK for the treatment of HCC. GPC3-targeted CAR-T cells overexpressing GLUT1 or AGK specifically and effectively lysed GPC3-positive tumor cells in vitro in an antigen-dependent manner. Furthermore, GLUT1 or AGK overexpression protected CAR-T cells from apoptosis during repeated exposures to tumor cells. Compared with second-generation CAR-T cells, GPC3-targeted CAR-T cells overexpressing GLUT1 or AGK exhibited greater CD8+ T-cell persistence in vivo and better antitumor effects in HCC allograft mouse models. Finally, we revealed that GLUT1 or AGK maintained anti-apoptosis ability in CD8+ T cells via activation of the PI3K/Akt pathway. This finding might identify a therapeutic strategy for advanced HCC.

13.
Oral Dis ; 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38623870

OBJECTIVES: The splicing factor transformer-2 homolog beta (Tra2ß) plays a pivotal role in various cancers. Nonetheless, its role in oral squamous cell carcinoma (OSCC) has not been comprehensively explored. This study sought to discern the influence of Tra2ß on OSCC and its underlying mechanisms. MATERIALS AND METHODS: We assessed Tra2ß expression in OSCC utilizing immunohistochemistry, qRT-PCR, and western blotting techniques. siRNA transfection was used to silence Tra2ß. Whole transcriptome RNA sequencing (RNA-seq) analysis was carried out to reveal the alternative splicing (AS) events. KEGG pathway analysis enriched the related pathways. Colony formation, transwell, wound healing, and Annexin V-FITC/PI were employed to appraise the consequences of Tra2ß silencing on OSCC. RESULTS: Tra2ß was highly expressed in both OSCC tissues and cell lines. Knockdown of Tra2ß-regulated AS events with skipped exon (SE) accounts for the highest proportion. Meanwhile, downregulation of Tra2ß reduced cell proliferation, migration, and invasion, however increasing cell apoptosis. Moreover, Wnt signaling pathway involved in the function of Tra2ß knockdown which was demonstrated directly by a discernible reduction in the expression of GSK3/ß-catenin signaling axis. CONCLUSIONS: These findings suggest that knockdown of Tra2ß may exert anti-tumor effects through the GSK3/ß-catenin signaling pathway in OSCC.

14.
Mol Cell Proteomics ; : 100769, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38641227

BACKGROUND: The understanding of dynamic plasma proteome features in hybrid immunity and breakthrough infection is limited. A deeper understanding of the immune differences between heterologous and homologous immunization could assist in the future establishment of vaccination strategies. METHODS: In this study, 40 participants who received a third dose of either a homologous BBIBP-CorV or a heterologous ZF2001 protein subunit vaccine following two doses of inactivated coronavirus disease 2019 vaccines and 12 patients with BA.2.2 breakthrough infections were enrolled. Serum samples were collected at Days 0, 28, and 180 following the boosting vaccination and breakthrough and then analyzed using neutralizing antibody tests and mass spectrometer-based proteomics. Mass cytometry of peripheral blood mononuclear cell samples was also performed in this cohort. RESULTS: The chemokine signaling pathway and humoral response markers (IgG2 and IgG3) associated with infection were found to be upregulated in breakthrough infections compared to vaccination-induced immunity. Elevated expression of IGKV, IGHV, IL-17 signaling, and the phagocytosis pathway, along with lower expression of FGL2, were correlated with higher antibody levels in the boosting vaccination groups. The MAPK signaling pathway and Fc gamma R-mediated phagocytosis were more enriched in the heterologous immunization groups than in the homologous immunization groups. CONCLUSION: Breakthrough infections can trigger more intensive inflammatory chemokine responses than vaccination. T-cell and innate immune activation have been shown to be closely related to enhanced antibody levels after vaccination and therefore might be potential targets for vaccine adjuvant design.

16.
Sci Rep ; 14(1): 8690, 2024 04 15.
Article En | MEDLINE | ID: mdl-38622216

In the era of artificial intelligence, privacy empowerment illusion has become a crucial means for digital enterprises and platforms to "manipulate" users and create an illusion of control. This topic has also become an urgent and pressing concern for current research. However, the existing studies are limited in terms of their perspectives and methodologies, making it challenging to fully explain why users express concerns about privacy empowerment illusion but repeatedly disclose their personal information. This study combines the associative-propositional evaluation model (APE) and cognitive load theory, using event-related potential (ERP) technology to investigate the underlying mechanisms of how the comprehensibility and interpretability of privacy empowerment illusion cues affect users' immediate attitudes and privacy disclosure behaviours; these mechanisms are mediated by psychological processing and cognitive load differences. Behavioural research results indicate that in the context of privacy empowerment illusion cues with low comprehensibility, users are more inclined to disclose their private information when faced with high interpretability than they are when faced with low interpretability. EEG results show that in the context of privacy empowerment illusion cues with low comprehensibility, high interpretability induces greater P2 amplitudes than does low interpretability; low interpretability induces greater N2 amplitudes than does high interpretability. This study extends the scopes of the APE model and cognitive load theory in the field of privacy research, providing new insights into privacy attitudes. Doing so offers a valuable framework through which digital enterprises can gain a deeper understanding of users' genuine privacy attitudes and immediate reactions under privacy empowerment illusion situations. This understanding can help increase user privacy protection and improve their overall online experience, making it highly relevant and beneficial.


Hominidae , Illusions , Humans , Animals , Privacy/psychology , Disclosure , Cues , Artificial Intelligence , Cognition
17.
BMC Med Imaging ; 24(1): 86, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38600525

Medical imaging AI systems and big data analytics have attracted much attention from researchers of industry and academia. The application of medical imaging AI systems and big data analytics play an important role in the technology of content based remote sensing (CBRS) development. Environmental data, information, and analysis have been produced promptly using remote sensing (RS). The method for creating a useful digital map from an image data set is called image information extraction. Image information extraction depends on target recognition (shape and color). For low-level image attributes like texture, Classifier-based Retrieval(CR) techniques are ineffective since they categorize the input images and only return images from the determined classes of RS. The issues mentioned earlier cannot be handled by the existing expertise based on a keyword/metadata remote sensing data service model. To get over these restrictions, Fuzzy Class Membership-based Image Extraction (FCMIE), a technology developed for Content-Based Remote Sensing (CBRS), is suggested. The compensation fuzzy neural network (CFNN) is used to calculate the category label and fuzzy category membership of the query image. Use a basic and balanced weighted distance metric. Feature information extraction (FIE) enhances remote sensing image processing and autonomous information retrieval of visual content based on time-frequency meaning, such as color, texture and shape attributes of images. Hierarchical nested structure and cyclic similarity measure produce faster queries when searching. The experiment's findings indicate that applying the proposed model can have favorable outcomes for assessment measures, including Ratio of Coverage, average means precision, recall, and efficiency retrieval that are attained more effectively than the existing CR model. In the areas of feature tracking, climate forecasting, background noise reduction, and simulating nonlinear functional behaviors, CFNN has a wide range of RS applications. The proposed method CFNN-FCMIE achieves a minimum range of 4-5% for all three feature vectors, sample mean and comparison precision-recall ratio, which gives better results than the existing classifier-based retrieval model. This work provides an important reference for medical imaging artificial intelligence system and big data analysis.


Artificial Intelligence , Remote Sensing Technology , Humans , Data Science , Information Storage and Retrieval , Neural Networks, Computer
18.
Prog Neurobiol ; 236: 102614, 2024 May.
Article En | MEDLINE | ID: mdl-38641040

Complement activation and prefrontal cortical dysfunction both contribute to the pathogenesis of major depressive disorder (MDD), but their interplay in MDD is unclear. We here studied the role of complement C3a receptor (C3aR) in the medial prefrontal cortex (mPFC) and its influence on depressive-like behaviors induced by systematic lipopolysaccharides (LPS) administration. C3aR knockout (KO) or intra-mPFC C3aR antagonism confers resilience, whereas C3aR expression in mPFC neurons makes KO mice susceptible to LPS-induced depressive-like behaviors. Importantly, the excitation and inhibition of mPFC neurons have opposing effects on depressive-like behaviors, aligning with increased and decreased excitability by C3aR deletion and activation in cortical neurons. In particular, inhibiting mPFC glutamatergic (mPFCGlu) neurons, the main neuronal subpopulation expresses C3aR, induces depressive-like behaviors in saline-treated WT and KO mice, but not in LPS-treated KO mice. Compared to hypoexcitable mPFCGlu neurons in LPS-treated WT mice, C3aR-null mPFCGlu neurons display hyperexcitability upon LPS treatment, and enhanced excitation of mPFCGlu neurons is anti-depressant, suggesting a protective role of C3aR deficiency in these circumstances. In conclusion, C3aR modulates susceptibility to LPS-induced depressive-like behaviors through mPFCGlu neuronal excitability. This study identifies C3aR as a pivotal intersection of complement activation, mPFC dysfunction, and depression and a promising therapeutic target for MDD.


Depression , Lipopolysaccharides , Mice, Knockout , Neurons , Prefrontal Cortex , Animals , Prefrontal Cortex/metabolism , Prefrontal Cortex/drug effects , Lipopolysaccharides/pharmacology , Neurons/metabolism , Neurons/drug effects , Mice , Depression/metabolism , Depression/chemically induced , Receptors, Complement/metabolism , Mice, Inbred C57BL , Male , Glutamic Acid/metabolism
19.
Int J Biol Macromol ; 268(Pt 1): 131899, 2024 May.
Article En | MEDLINE | ID: mdl-38677703

Emerging food processing technologies provide broader avenues for enhancing probiotic delivery systems. In this study, the new Fu brick tea polysaccharide (FBTP) was extracted and combined with cold plasma-modified alginate nano-montmorillonite (AMT) to prepare microgels by ionic gelation to improve the viability of encapsulated Lactobacillus kefiranofaciens JKSP109. Results showed that cold plasma treatment for 3 min changed the surface charge of AMT biopolymer solution, and FBTP addition reduced the particle size to the lowest of 223 ± 5.50 nm. Morphological analysis showed that the AMT treated with cold plasma for 3 min and FBTP (C3AMT + FBTP) formed a dense microgel through electrostatic interaction, and the probiotics were randomly distributed in their internal polysaccharide network, as well as the interlayer and surrounding of nanoparticles. The probiotics immobilized in C3AMT + FBTP microgel exhibited the highest viability (8.48 ± 0.03 log CFU/g) and colonic colonization after exposure to simulated gastrointestinal conditions. In addition, the good antioxidant activity of FBTP reduced the loss of probiotic viability during storage, with only 2.58 log CFU/g decreased after 4 weeks. Therefore, such probiotic products enriched with natural bioactive ingredients can be developed as a potential functional food additive.


Alginates , Microgels , Polysaccharides , Probiotics , Tea , Alginates/chemistry , Tea/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Microgels/chemistry , Microbial Viability/drug effects , Plasma Gases/pharmacology , Plasma Gases/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Lactobacillus , Particle Size
20.
Phys Chem Chem Phys ; 26(15): 11395-11405, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38572584

The initial decomposition pathways of α-FOX-7 in the condensed phase (crystal) were investigated via density functional theory. Calculations were carried out using three FOX-7 systems with increasing complexity from 1-layer (sheet) via 2-layer (surface) to 3-layer (bulk). The encapsulated environment of the central α-FOX-7 molecule, where decomposition takes place, is reconstructed by neighbouring molecules following a crystal structure. A minimal number of neighbouring molecules that have an impact on the energetics of decomposition are identified among all surrounding molecules. The results show that the presence of intermolecular hydrogen bonds due to the encapsulated environment in the condensed phase decreases the sensitivity of α-FOX-7, i.e. it increases the barrier of decomposition, but it does not alter the initial decomposition pathways of the reaction compared to the gas phase. Moreover, increasing the complexity of the system from a single gas phase molecule via sheet and surface to bulk increases the decomposition barriers. The calculations reveal a remarkable agreement with experimental data [A. M. Turner, Y. Luo, J. H. Marks, R. Sun, J. T. Lechner, T. M. Klapötke and R. I. Kaiser, Exploring the Photochemistry of Solid 1, 1-Diamino-2, 2-Dinitroethylene (FOX-7) Spanning Simple Bon Ruptures, Nitro-to-Nitrite Isomerization, and Nonadiabatic Dynamics, J. Phys. Chem. A, 2022, 126, 29, 4747-4761] and suggest that the initial decomposition of α-FOX-7 likely takes place at the surface of the crystal.

...