Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39256056

RESUMEN

Polydopamine (PDA) is well known as a mussel-inspired adhesive material composed of oligomeric heteropolymers. However, the conventional eumelanin-like structural assumption of PDA seems deficient in explaining its interfacial adhesion. To determine the decisive mechanism of PDA coating formation, experiments and simulations were performed in this study. 5,6-Dihydroxyindole (DHI), the signature building block of eumelanin, was introduced as the control group. Various typical building blocks in PDA were quantified by physicochemical characterizations, and the polar-group-dominated interfacial interaction was evaluated by classic molecular dynamics and metadynamics methods. Aminoethyl has been proven to be the key functional group inducing the adsorption of PDA on the hydroxylated silica substrates, while DHI shows limited adhesion to the substrate due to the absence of aminoethyl as the catechol-indole structure of DHI exhibits poor affinity to the silica surface. Pyrrole carboxylic acid, as an oxidative product detected from PDA/DHI, is unfavorable for its adhesion to silica substrates. Overall, the coating formation and self-aggregating precipitation of PDA are two competitive aminoethyl-consuming paths; thus, the in situ oxidative coupling of dopamine is indispensable for the PDA coating preparation. The collected PDA precipitates can no longer present satisfactory coating forming behavior, resulting from a shortage of aminoethyl moieties.

2.
Bioengineering (Basel) ; 10(12)2023 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-38135949

RESUMEN

Extruded bioprinting is widely used for the biomanufacturing of personalized, complex tissue structures, which requires biomaterial inks with a certain viscosity to enable printing. However, there is still a lack of discussion on the controllable preparation and printability of biomaterial inks with different viscosities. In this paper, biomaterial inks composed of gelatin, sodium alginate, and methylcellulose were utablesed to investigate the feasibility of adjustment of rheological properties, thereby analyzing the effects of different rheological properties on the printing process. Based on the response surface methodology, the relationship between the material components and the rheological properties of biomaterial inks was discussed, followed by the prediction of the rheological properties of biomaterial inks. The prediction accuracies of the power-law index and consistency coefficient could reach 96% and 79%, respectively. The material group can be used to prepare biomaterial inks with different viscosity properties in a wide range. Latin hypercube sampling and computational fluid dynamics were used to analyze the effects of different rheological properties and extrusion pressure on the flow rate at the nozzle. The relationship between the rheological properties of the biomaterial ink and the flow rate was established, and the simulation results showed that the changes in the rheological properties of the biomaterial ink in the high-viscosity region resulted in slight fluctuations in the flow rate, implying that the printing process for high-viscosity biomaterial inks may have better versatility. In addition, based on the characteristics of biomaterial inks, the printing process was optimized from the planning of the print pattern to improve the location accuracy of the starting point, and the length accuracy of filaments can reach 99%. The effect of the overlap between the fill pattern and outer frame on the print quality was investigated to improve the surface quality of complex structures. Furthermore, low- and high-viscosity biomaterial inks were tested, and various printing protocols were discussed for improving printing efficiency or maintaining cell activity. This study provides feasible printing concepts for a wider range of biomaterials to meet the biological requirements of cell culture and tissue engineering.

3.
Artículo en Inglés | MEDLINE | ID: mdl-37922148

RESUMEN

Responsive surfaces with reversibly switchable wettability have attracted widespread attention due to their diverse range of potential applications in the past few years. As a representative example, the magnetically actuated dynamic regulation structured surfaces provide a convenient and unique approach to achieving remote control and instantaneous response. However, (quasi)quantitative design strategies and economical fabrication methods with high precision for magnetically responsive surfaces with both superhydrophobicity and superior wetting switchability still remain challenging. In this work, a manufacturing technique for high-aspect-ratio magnetically responsive superhydrophobic surfaces (MRSSs) via the integration of micromilling, replica molding, and coating modification is proposed. The geometrical parameters of magnetic micropillar arrays (MMAs) on the surface are specially designed on the basis of the Cassie-Wenzel (C-W) transition critical condition in order to guarantee the initial superhydrophobicity of the surface. Benefiting from the reconfigurable microstructures of MMAs in response to magnetic fields (i.e., shifting between upright and curved states), the wettability and adhesion of MRSSs can be reversibly switched. The smart wetting controllability presented on MRSSs is proven to be largely determined by the geometrical parameters and deformation capacity of the micropillars, while the visible wetting switching is mainly ascribed to the variation in wetting regimes of droplets. The modification of the superhydrophobic coatings on the micropillar top is also demonstrated to be capable of further enhancing the initial hydrophobicity and switchable wettability of surfaces, producing water droplets with a volume of 4-6 µL to exhibit the reversible switch from low adhesive superhydrophobicity to high adhesive hydrophilicity. In addition to providing an alternative fabrication strategy, this work also presents a set of design concepts for more applicable and sensitive MRSSs, offering a reference to both fundamental research and practical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA