Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemistry ; 30(36): e202400280, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38651795

RESUMEN

Three hybrid electrochemical protocols, which involve the energy transfer, direct photolysis and N-hydroxyphthalimide catalyst, respectively, are presented for the selenylation/cyclization of the fragile substrates of 3-aza-1,5-dienes with diorganyl diselenides to afford 3-selenomethyl-4-pyrrolin-2-ones. The two electrophotocatalytic reactions and the indirect electrolysis one are both regioselective and external-oxidant- and transition-metal-free, and are associated with a broad substrate scope and high Se-economy, and all three methods are amenable to gram-scale syntheses, late-stage functionalizations, sunlight-induced experiments and all-solar-driven syntheses.

2.
Addict Biol ; 29(2): e13375, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38380802

RESUMEN

Recent studies found that non-coding RNAs (ncRNAs) played crucial roles in drug addiction through epigenetic regulation of gene expression and underlying drug-induced neuroadaptations. In this study, we characterized lncRNA transcriptome profiles in the nucleus accumbens (NAc) of mice exhibiting morphine-conditioned place preference (CPP) and explored the prospective roles of novel differentially expressed lncRNA, lncLingo2 and its derived miR-876-5p in the acquisition of opioids-associated behaviours. We found that the lncLingo2 was downregulated within the NAc core (NAcC) but not in the NAc shell (NAcS). This downregulation was found to be associated with the development of morphine CPP and heroin intravenous self-administration (IVSA). As Mfold software revealed that the secondary structures of lncLingo2 contained the sequence of pre-miR-876, transfection of LV-lncLingo2 into HEK293 cells significantly upregulated miR-876 expression and the changes of mature miR-876 are positively correlated with lncLingo2 expression in NAcC of morphine CPP trained mice. Delivering miR-876-5p mimics into NAcC also inhibited the acquisition of morphine CPP. Furthermore, bioinformatics analysis and dual-luciferase assay confirmed that miR-876-5p binds to its target gene, Kcnn3, selectively and regulates morphine CPP training-induced alteration of Kcnn3 expression. Lastly, the electrophysiological analysis indicated that the currents of small conductance calcium-activated potassium (SK) channel was increased, which led to low neuronal excitability in NAcC after CPP training, and these changes were reversed by lncLingo2 overexpression. Collectively, lncLingo2 may function as a precursor of miR-876-5p in NAcC, hence modulating the development of opioid-associated behaviours in mice, which may serve as an underlying biomarker and therapeutic target of opioid addiction.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Humanos , Ratones , Animales , Analgésicos Opioides/farmacología , Analgésicos Opioides/metabolismo , Epigénesis Genética , Células HEK293 , Morfina/farmacología , Morfina/metabolismo , Núcleo Accumbens/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo
3.
Chem Commun (Camb) ; 59(98): 14595-14598, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37991823

RESUMEN

A domino reaction of o-alkenylaryl isocyanides with elemental sulfur and selenium in pure water was developed for the efficient and green synthesis of quinoline-2-thione and diquinolyl diselenide derivatives. Mechanistical investigation reveals that intramolecular nucleophilic addition of an alkenyl group to the in situ generated isothio/isoselenocyanate accounts for the formation of a quinoline-ring. Moreover, this transformation is also amendable for the convenient preparation of 2-fluoromethylthio-/seleno-quinolines by a one-pot three-component reaction.

4.
Heliyon ; 9(11): e21915, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38034615

RESUMEN

Nkx2.3, a transcription factor, plays important roles in various developmental processes. However, the mechanisms underlying nkx2.3's regulation of pouch and pharyngeal arch development in zebrafish remain unclear. In this study, we demonstrated that knockdown or knockout of nkx2.3 resulted in the absence of posterior ceratobranchial cartilages in zebrafish. The absence of posterior pharyngeal cartilages is a consequence of the compromised proliferation and differentiation and survival of cranial neural crest cells (CNCCs). Notably, we found that nkx2.3 was not involved in endoderm pouch formation. Additionally, our findings suggested that nkx2.3 negatively regulated Fibroblast growth factor (Fgf) signaling, as overexpression of fgf8 could mimic the phenotype observed in nkx2.3 morphants, suppressing CNCC differentiation. Moreover, inhibiting Fgf signaling restored the abnormalities in posterior cartilages induced by nkx2.3 knockdown. These findings establish the essential role of nkx2.3 in the development of posterior ceratobranchial cartilages through the inhibition of fgf8.

5.
J Org Chem ; 88(18): 12935-12948, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37673796

RESUMEN

An electrochemical or photoelectrochemical regioselective polyfluoroalkylation/cyclization cascade of 3-aza-1,5-dienes with sodium fluoroalkanesulfinates is presented. This protocol proceeds with a broad substrate scope and good functional group tolerance under mild, oxidant-free, transition-metal-free, and electrolyte-free conditions to provide 3-polyfluoroalkylated 4-pyrrolin-2-ones in one step from readily available N-vinylacrylamides, and it is readily scalable to the Gram scale.

6.
iScience ; 26(9): 107516, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37636049

RESUMEN

Adducin 1 (Add1) is known as a membrane cytoskeletal protein, but its nuclear function remains unclear. In this study, we generated add1-deficient zebrafish to investigate its role in hematopoiesis. Lack of add1 impaired both primitive and definitive hematopoiesis, preventing healthy erythrocyte development. RNA sequencing revealed activation of the p53 pathway in add1-depleted erythroblast cells, leading to apoptosis at the 14-somites stage and 24 hpf. Interestingly, partial rescue of the anemic phenotype and apoptosis was observed with p53 insufficiency. Mechanistically, ADD1 was found to regulate promoter activity. These findings demonstrate that Add1 plays a crucial role in zebrafish erythropoiesis, involving the p53-mediated apoptotic pathway, expanding its regulatory role beyond cytoskeletal functions.

7.
Genes Immun ; 24(4): 159-170, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37422588

RESUMEN

The current diagnostic biomarkers of acute myocardial infarction (AMI), troponins, lack specificity and exist as false positives in other non-cardiac diseases. Previous studies revealed that cuproptosis, ferroptosis, and immune infiltration are all involved in the development of AMI. We hypothesize that combining the analysis of cuproptosis, ferroptosis, and immune infiltration in AMI will help identify more precise diagnostic biomarkers. The results showed that a total of 19 cuproptosis- and ferroptosis-related genes (CFRGs) were differentially expressed between the healthy and AMI groups. Functional enrichment analysis showed that the differential CFRGs were mostly enriched in biological processes related to oxidative stress and the inflammatory response. The immune infiltration status analyzed by ssGSEA found elevated levels of macrophages, neutrophils, and CCR in AMI. Then, we screened 6 immune-related CFRGs (CXCL2, DDIT3, DUSP1, CDKN1A, TLR4, STAT3) to construct a nomogram for predicting AMI and validated it in the GSE109048 dataset. Moreover, we also identified 5 pivotal miRNAs and 10 candidate drugs that target the 6 feature genes. Finally, RT-qPCR analysis verified that all 6 feature genes were upregulated in both animals and patients. In conclusion, our study reveals the significance of immune-related CFRGs in AMI and provides new insights for AMI diagnosis and treatment.


Asunto(s)
Apoptosis , Ferroptosis , Infarto del Miocardio , Animales , Biomarcadores , Ferroptosis/genética , Genes cdc , Macrófagos , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/genética , Cobre
8.
J Adv Res ; 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37499939

RESUMEN

INTRODUCTION: Vascular neointimal hyperplasia, a pathological process observed in cardiovascular diseases such as atherosclerosis and pulmonary hypertension, involves the abundant presence of vascular smooth muscle cells (VSMCs). The proliferation, migration, and autophagy of VSMCs are associated with the development of neointimal lesions. Circular RNAs (circRNAs) play critical roles in regulating VSMC proliferation and migration, thereby participating in neointimal hyperplasia. However, the regulatory roles of circRNAs in VSMC autophagy remain unclear. OBJECTIVES: We aimed to identify circRNAs that are involved in VSMC autophagy-mediated neointimal hyperplasia, as well as elucidate the underlying mechanisms. METHODS: Dual-luciferase reporter gene assay was performed to validate two competing endogenous RNA axes, hsa_circ_0001402/miR-183-5p/FKBP prolyl isomerase like (FKBPL) and hsa_circ_0001402/miR-183-5p/beclin 1 (BECN1). Cell proliferation and migration analyses were employed to investigate the effects of hsa_circ_0001402, miR-183-5p, or FKBPL on VSMC proliferation and migration. Cell autophagy analysis was conducted to reveal the role of hsa_circ_0001402 or miR-183-5p on VSMC autophagy. The role of hsa_circ_0001402 or miR-183-5p on neointimal hyperplasia was evaluated using a mouse model of common carotid artery ligation. RESULTS: Hsa_circ_0001402 acted as a sponge for miR-183-5p, leading to the suppression of miR-183-5p expression. Through direct interaction with the coding sequence (CDS) of FKBPL, miR-183-5p promoted VSMC proliferation and migration by decreasing FKBPL levels. Besides, miR-183-5p reduced BECN1 levels by targeting the 3'-untranslated region (UTR) of BECN1, thus inhibiting VSMC autophagy. By acting as a miR-183-5p sponge, overexpression of hsa_circ_0001402 increased FKBPL levels to inhibit VSMC proliferation and migration, while simultaneously elevating BECN1 levels to activate VSMC autophagy, thereby alleviating neointimal hyperplasia. CONCLUSION: Hsa_circ_0001402, acting as a miR-183-5p sponge, increases FKBPL levels to inhibit VSMC proliferation and migration, while enhancing BECN1 levels to activate VSMC autophagy, thus alleviating neointimal hyperplasia. The hsa_circ_0001402/miR-183-5p/FKBPL axis and hsa_circ_0001402/miR-183-5p/BECN1 axis may offer potential therapeutic targets for neointimal hyperplasia.

9.
Cell Mol Biol Lett ; 27(1): 47, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35705912

RESUMEN

BACKGROUND: Abnormal proliferation of vascular smooth muscle cells (VSMCs) contributes to vascular remodeling diseases. Recently, it has been discovered that tRNA-derived small RNAs (tsRNAs), a new type of noncoding RNAs, are related to the proliferation and migration of VSMCs. tsRNAs regulate target gene expression through miRNA-like functions. This study aims to explore the potential of tsRNAs in human aortic smooth muscle cell (HASMC) proliferation. METHODS: High-throughput sequencing was performed to analyze the tsRNA expression profile of proliferative and quiescent HASMCs. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to validate the sequence results and subcellular distribution of AS-tDR-001370, AS-tDR-000067, AS-tDR-009512, and AS-tDR-000076. Based on the microRNA-like functions of tsRNAs, we predicted target promoters and mRNAs and constructed tsRNA-promoter and tsRNA-mRNA interaction networks. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to reveal the function of target genes. EdU incorporation assay, Western blot, and dual-luciferase reporter gene assay were utilized to detect the effects of tsRNAs on HASMC proliferation. RESULTS: Compared with quiescent HASMCs, there were 1838 differentially expressed tsRNAs in proliferative HASMCs, including 887 with increased expression (fold change > 2, p < 0.05) and 951 with decreased expression (fold change < ½, p < 0.05). AS-tDR-001370, AS-tDR-000067, AS-tDR-009512, and AS-tDR-000076 were increased in proliferative HASMCs and were mainly located in the nucleus. Bioinformatics analysis suggested that the four tsRNAs involved a variety of GO terms and pathways related to VSMC proliferation. AS-tDR-000067 promoted HASMC proliferation by suppressing p53 transcription in a promoter-targeted manner. AS-tDR-000076 accelerated HASMC proliferation by attenuating mitofusin 2 (MFN2) levels in a 3'-untranslated region (UTR)-targeted manner. CONCLUSIONS: During HASMC proliferation, the expression levels of many tsRNAs are altered. AS-tDR-000067 and AS-tDR-000076 act as new factors promoting VSMC proliferation.


Asunto(s)
MicroARNs , Miocitos del Músculo Liso , Regiones no Traducidas 3' , Aorta/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARN de Transferencia/farmacología
10.
Mol Neurobiol ; 59(7): 3996-4014, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35451738

RESUMEN

Long noncoding RNAs (lncRNAs) play an important regulatory role in various diseases. However, the role of lncRNAs in brain ischemic tolerance (BIT) induced by cerebral ischemic preconditioning (CIPC) is still unknown. The lncRNA profile of rat cortical astrocytes pretreated with ischemic preconditioning was analyzed by high-throughput sequencing. The results of Cell-Counting Kit-8 (CCK-8) assay showed that a novel lncRNA, NONRATT009133.2, which we referred to as brain ischemia-related factor (BIRF), was highly correlated with BIT. Through bioinformatics analysis, we predicted that BIRF, miR-330-5p, and GLT-1 (also named Slc1a2) might constitute a ceRNA regulatory network in the induction of BIT. We found that BIRF was upregulated by CIPC, which promoted GLT-1 expression and BIT induction. BIRF could directly bind to miR-330-5p. Furthermore, miR-330-5p directly targeted GLT-1, and miR-330-5p inhibited both GLT-1 expression and BIT induction in vitro and in vivo. Moreover, BIRF acts as a molecular sponge to competitively bind to miR-330-5p with GLT-1 mRNA, while the miR-330-5p inhibitor reversed all the effects of BIRF siRNA on GLT-1 expression and neuronal vitality. Taken together, our results demonstrate the important roles of the BIRF/miR-330-5p/GLT-1 axis in the induction of BIT by CIPC. BIRF may be a potentially effective therapeutic strategy against stroke injury.


Asunto(s)
Isquemia Encefálica , Transportador 2 de Aminoácidos Excitadores , Precondicionamiento Isquémico , MicroARNs , ARN Largo no Codificante , Animales , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Clorprofam , Transportador 2 de Aminoácidos Excitadores/genética , Transportador 2 de Aminoácidos Excitadores/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ratas
11.
J Org Chem ; 87(5): 2845-2852, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35133836

RESUMEN

An ionic cascade insertion/cyclization reaction of thia-/selena-functionalized arylisocyanides has been successfully developed for the efficient and practical synthesis of 2-halobenzothiazole/benzoselenazole derivatives. This synthetic protocol, incorporating a halogen atom when forming the five-membered ring of benzothia/selenazoles, is different from the existing ones, where halogenation of the preformed benzothia/selenazole precursors happens. Additionally, a facile access to 2-aminobenzothiazoles is also achieved by the one-pot cascade reaction of 2-isocyanoaryl thioethers, iodine, and amines.

12.
Front Cardiovasc Med ; 8: 702718, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34557530

RESUMEN

Abnormal proliferation of vascular smooth muscle cells (VSMCs) is a common feature of many vascular remodeling diseases. Because long non-coding RNAs (lncRNAs) play a critical role in cardiovascular diseases, we analyzed the key lncRNAs that regulate VSMC proliferation. Microarray analysis identified 2,643 differentially expressed lncRNAs (DELs) and 3,720 differentially expressed coding genes (DEGs) between fetal bovine serum (FBS) starvation-induced quiescent human aortic smooth muscle cells (HASMCs) and platelet-derived growth factor-BB (PDGF-BB)-stimulated proliferative HASMCs. Gene Ontology and pathway analyses of the identified DEGs and DELs demonstrated that many lncRNAs were enriched in pathways related to cell proliferation. One of the upregulated lncRNAs in proliferative HASMC was HIF1A anti-sense RNA 2 (HIF1A-AS2). HIF1A-AS2 suppression decreased HASMC proliferation via the miR-30e-5p/CCND2 mRNA axis. We have thus identified key DELs and DEGs involved in the regulation of PDGF-BB induced HASMC proliferation. Moreover, HIF1A-AS2 promotes HASMC proliferation, suggesting its potential involvement in VSMC proliferative vascular diseases.

13.
Andrologia ; 53(10): e14184, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34255383

RESUMEN

This study is to identify the differentially expressed miRNAs in testicular tissues of rats with hyperuricaemia-induced male infertility. We found that the hyperuricaemia model group had significantly increased serum uric acid, while significantly decreased sperm concentration and motile sperm percentage than normal group (p < .05). A total of 39 differentially expressed miRNAs were identified in the testicular tissues of hyperuricaemia rats compared with the control rats, ten of which were validated by real-time PCR. The target mRNAs of 7 differentially expressed miRNAs (miR-10b-5p, miR-26a-5p, miR-136-5p, miR-151-3p, miR-183-5p, miR-362-3p and miR-509-5p) from 3'-untranslated region binding perspective were enriched in signalling pathways of Wnt, Jak-STAT, mTOR and MAPK. The target mRNAs of 6 differentially expressed miRNAs (miR-136-5p, miR-144-3p, miR-99a-5p, miR-509-5p, miR-451-5p and miR-362-3p) from coding sequence binding perspective were enriched in signalling pathways of Calcium, Notch and MAPK. The functions of miRNAs in testicular tissues of rats with hyperuricaemia were revealed by the differentially expressed miRNAs (miR-183-5p, miR-99a-5p, miR-10b-5p, miR-151-3p, miR-26a-5p, miR-451-5p, miR-362-3p, miR-136-5p, miR-144-3p and miR-509-5p)-mRNAs interaction network. The differentially expressed miRNAs in the testicular tissues of hyperuricaemia rats might shed light on the mechanism of hyperuricaemia-induced male infertility.


Asunto(s)
Hiperuricemia , MicroARNs , Animales , Perfilación de la Expresión Génica , Hiperuricemia/genética , Masculino , MicroARNs/genética , ARN Mensajero , Ratas , Transducción de Señal , Testículo , Ácido Úrico
14.
Int J Mol Sci ; 22(7)2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918469

RESUMEN

Wheat pre-harvest sprouting (PHS) causes serious losses in wheat yield. In this study, precise mapping was carried out in the chromosome segment substitution lines (CSSL) F2 population generated by a direct cross of Zhoumai 18 (PHS-sensitive) and Aegilops tauschii accession T093 (highly PHS-resistant). Three Ae. tauschii-derived quantitative trait loci (QTLs), QDor.3D.1, QDor.3D.2, and QDor.3D.3, were detected on chromosome 3DL using four simple sequence repeats (SSR) markers and 10 developed Kompetitive allele-specific PCR (KASP) markers. Alongside these QTL results, the RNA-Seq and qRT-PCR analysis revealed expression levels of TraesCS3D01G466100 in the QDor.3D.2 region that were significantly higher in CSSLs 495 than in Zhoumai 18 during the seed imbibition treatment. The cDNA sequencing results of TraesCS3D01G466100 showed two single nucleotide polymorphisms (SNPs), resulting in two changed amino acid substitutions between Zhoumai 18 and line 495, and the 148 nt amino acid substitution of TraesCS3D01G466100, derived from Ae. tauschii T093, which may play an important role in the functioning of ubiquitin ligase enzymes 3 (E3) according to the homology protein analysis, which could lead to differential PHS-resistance phenotypes. Taken together, our results may foster a better understanding of the mechanism of PHS resistance and are potentially valuable for marker-assisted selection in practical wheat breeding efforts.


Asunto(s)
Aegilops/genética , Germinación/genética , Sitios de Carácter Cuantitativo , Triticum/genética , Aegilops/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARN , Triticum/metabolismo
15.
Aging (Albany NY) ; 13(6): 8797-8816, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33714958

RESUMEN

In the central nervous system, nuclear factor erythroid-2-related factor 2 (Nrf2) protects neurons from oxidant injury, thereby ameliorating neurodegeneration. We explored the key circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs) involved in Nrf2-induced neuroprotection. We used microarrays to examine the circRNAs (DEcircRNAs), lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) differentially expressed between Nrf2 (+/+) and Nrf2 (-/-) mice and identified DEcircRNA/DElncRNA-miRNA-DEmRNA interaction networks. In total, 197 DEcircRNAs, 685 DElncRNAs and 356 DEmRNAs were identified in prefrontal cortical tissues from Nrf2 (-/-) mice. The expression patterns of selected DEcircRNAs (except for mmu_circ_0003404) and DElncRNAs in qRT-PCR analyses were generally consistent with the microarray analysis results. Functional annotation of the DEmRNAs in the DEcircRNA/DElncRNA-miRNA-DEmRNA networks indicated that five non-coding RNAs (mmu_circ_0000233, ENSMUST00000204847, NONMMUT024778, NONMMUT132160 and NONMMUT132168) may contribute to Nrf2 activity, with the help of mmu_circ_0015035 and NONMMUT127961. The results also revealed that four non-coding RNAs (cicRNA.20127, mmu_circ_0012936, ENSMUST00000194077 and NONMMUT109267) may influence glutathione metabolism. Additionally, 44 DEcircRNAs and 7 DElncRNAs were found to possess coding potential. These findings provide clues to the molecular pathways through which Nrf2 protects neurons.


Asunto(s)
Factor 2 Relacionado con NF-E2/genética , Neuroprotección/genética , Corteza Prefrontal , ARN Circular/genética , ARN Largo no Codificante/genética , Animales , Regulación de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Masculino , Ratones , Ratones Endogámicos ICR , Ratones Noqueados
16.
Aging (Albany NY) ; 13(2): 1989-2014, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33323543

RESUMEN

Circular RNAs (circRNAs) have a critical regulatory function in human glioma. However, novel circRNAs related to different pathological grades of glioma and their crucial potential function are worth screening and prediction. CircRNA expression profiling was performed for 6 paired high- and low-grade glioma tissues and 5 adjacent normal brain tissues through next-generation sequencing. Quantitative real-time PCR (qRT-PCR) was conducted to validate circRNA expression. Bioinformatics analysis was performed, and circRNA-miRNA-mRNA networks were constructed. The expression and survival data of miRNAs and target genes were examined by GEPIA, Chinese Glioma Genome Atlas (CGGA), ONCOMINE, and cBioPortal databases. The RNA binding proteins (RBPs), open reading frames (ORFs) and N6-methyladenosine (m6A) modifications of the identified circRNAs were also predicted. Through multilevel research screening, 4 circRNAs (hsa_circ_0000915, hsa_circ_0127664, hsa_circ_0008362, and hsa_circ_0001467) were associated with glioma of different pathological grades and could be preferred candidates for subsequent functional analysis. Therefore, circRNAs are associated with the different pathological grades of glioma and reveal their potential critical regulatory function. CircRNAs might provide vital molecular biomarkers and potential therapeutic targets for glioma.


Asunto(s)
Neoplasias Encefálicas/diagnóstico , Glioma/diagnóstico , Clasificación del Tumor/métodos , ARN Circular/análisis , Adenosina/análogos & derivados , Adenosina/análisis , Adulto , Anciano , Química Encefálica , Neoplasias Encefálicas/genética , Biología Computacional , Femenino , Redes Reguladoras de Genes , Glioma/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Tamizaje Masivo , Redes y Vías Metabólicas/genética , Persona de Mediana Edad , Sistemas de Lectura Abierta/genética , Valor Predictivo de las Pruebas , ARN Circular/biosíntesis , ARN Circular/genética
17.
Cell Death Dis ; 11(5): 319, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32371936

RESUMEN

Podocyte injury is the main cause of proteinuria in lupus nephritis (LN). Nestin, an important cytoskeleton protein, is expressed stably in podocytes and is associated with podocyte injury. However, the role of nestin in the pathogenesis of proteinuria in LN remains unclear. The correlations among nestin, nephrin and proteinuria were analyzed in LN patients and MRL/lpr lupus-prone mice. The expression of nestin in mouse podocyte lines (MPCs) and MRL/lpr mice was knocked down to determine the role of nestin in podocyte injury. Inhibitors and RNAi method were used to explore the role of mitophagy and oxidative stress in nestin protection of podocyte from damage. There was a significantly negative correlation between nestin and proteinuria both in LN patients and MRL/lpr mice, whereas the expression of nephrin was positively correlated with nestin. Knockdown of nestin resulted in not only the decrease of nephrin, p-nephrin (Y1217) and mitophagy-associated proteins in cultured podocytes and the podocytes of MRL/lpr mice, but also mitochondrial dysfunction in podocytes stimulated with LN plasma. The expression and phosphorylation of nephrin was significantly decreased by reducing the level of mitophagy or production of reactive oxygen species (ROS) in cultured podocytes. Our findings suggested that nestin regulated the expression of nephrin through mitophagy and oxidative stress to protect the podocytes from injury in LN.


Asunto(s)
Nefritis Lúpica/metabolismo , Proteínas de la Membrana/metabolismo , Células Madre Mesenquimatosas/metabolismo , Estrés Oxidativo/fisiología , Podocitos/metabolismo , Adulto , Animales , Femenino , Humanos , Riñón/metabolismo , Riñón/patología , Nefritis Lúpica/tratamiento farmacológico , Nefritis Lúpica/patología , Masculino , Proteínas de la Membrana/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Persona de Mediana Edad , Nestina/metabolismo , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/metabolismo , Sustancias Protectoras/farmacología , Proteinuria/metabolismo
18.
J Cell Mol Med ; 24(8): 4762-4772, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32155686

RESUMEN

Vascular smooth muscle cell (VSMC) proliferation is the pathological base of vascular remodelling diseases. Circular RNAs (circRNAs) are important regulators involved in various biological processes. However, the function of circRNAs in VSMC proliferation regulation remains largely unknown. This study was conducted to identify the key differentially expressed circRNAs (DEcircRNAs) and predict their functions in human aortic smooth muscle cell (HASMC) proliferation. To achieve this, DEcircRNAs between proliferative and quiescent HASMCs were detected using a microarray, followed by quantitative real-time RT-PCR validation. A DEcircRNA-miRNA-DEmRNA network was constructed, and functional annotation was performed using Gene Ontology (GO) and KEGG pathway analysis. The function of hsa_circ_0002579 in HASMC proliferation was analysed by Western blot. The functional annotation of the DEcircRNA-miRNA-DEmRNA network indicated that the four DEcircRNAs might play roles in the TGF-ß receptor signalling pathway, Ras signalling pathway, AMPK signalling pathway and Wnt signalling pathway. Twenty-seven DEcircRNAs with coding potential were screened. Hsa_circ_0002579 might be a pro-proliferation factor of HASMC. Overall, our study identified the key DEcircRNAs between proliferative and quiescent HASMCs, which might provide new important clues for exploring the functions of circRNAs in vascular remodelling diseases.


Asunto(s)
Aorta/crecimiento & desarrollo , Proliferación Celular/genética , Músculo Liso Vascular/crecimiento & desarrollo , ARN Circular/genética , Aorta/metabolismo , Técnicas de Cultivo de Célula , Regulación del Desarrollo de la Expresión Génica/genética , Ontología de Genes , Redes Reguladoras de Genes/genética , Humanos , MicroARNs/genética , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Transducción de Señal/genética
19.
Front Mol Neurosci ; 12: 196, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31447646

RESUMEN

BACKGROUND: Nrf2 (nuclear factor, erythroid 2 like 2) is believed to play a major role in neurodegenerative diseases. The present study attempts to investigate the hippocampal circRNA and lncRNA expression profiles associated with Nrf2-mediated neuroprotection. METHODS: The hippocampal mRNA, circRNA and lncRNA expression profiles of Nrf2 (-/-) mice were determined by a microarray analysis. Bioinformatics analyses, including identification of differentially expressed mRNAs (DEmRNAs), circRNAs (DEcircRNAs) and lncRNAs (DElncRNAs), DEcircRNA-miRNA-DEmRNA interaction network construction, DElncRNA-DEmRNA co-expression network construction, and biological function annotation, were conducted. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to validate the dysregulated expression of circRNAs and lncRNAs derived from the microarray data of the hippocampus of Nrf2 (-/-) mice. RESULTS: Compared to wild-type Nrf2 (+/+) mice, 412 DEmRNAs (109 up- and 303 down-regulated mRNAs), 1279 DEcircRNAs (632 up- and 647 down-regulated circRNAs), and 303 DElncRNAs (50 up- and 253 down-regulated lncRNAs) were identified in the hippocampus of Nrf2 (-/-) mice. Additionally, in the qRT-PCR validation results, the expression patterns of selected DEcircRNAs and DElncRNAs were generally consistent with results in the microarray data. The DEcircRNA-miRNA-DEmRNA interaction networks revealed that mmu_circRNA_44531, mmu_circRNA_34132, mmu_circRNA_000903, mmu_circRNA_018676, mmu_circRNA_45901, mmu_circRNA_33836, mmu_circRNA_ 34137, mmu_circRNA_34106, mmu_circRNA_008691, and mmu_circRNA_003237 were predicted to compete with 47, 54, 45, 57, 63, 81, 121, 85, 181, and 43 DEmRNAs, respectively. ENSMUST00000125413, NR_028123, uc008nfy.1, AK076764, AK142725, AK080547, and AK035903 were co-expressed with 178, 89, 149, 179, 142, 55, and 112 DEmRNAs in the Nrf2 (-/-) hippocampus, respectively. CONCLUSION: Our study might contribute to exploring the key circRNAs and lncRNAs associated with Nrf2-mediated neuroprotection.

20.
Nucleic Acids Res ; 47(7): 3580-3593, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30820544

RESUMEN

NF-κB-mediated inflammatory phenotypic switching of vascular smooth muscle cells (VSMCs) plays a central role in atherosclerosis and neointimal formation. However, little is known about the roles of circRNAs in the regulation of NF-κB signaling. Here, we identify the involvement of circ-Sirt1 that was one of transcripts of SIRT1 host gene in VSMC inflammatory response and neointimal hyperplasia. First, in the cytoplasm, circ-Sirt1 directly interacts with and sequesters NF-κB p65 from nuclear translocation induced by TNF-α in a sequence-dependent manner. The inhibitory complex of circ-Sirt1-NF-κB p65 is not dependent on IκBα. Second, circ-Sirt1 binds to miR-132/212 that interferes with SIRT1 mRNA, and facilitates the expression of host gene SIRT1. Increased SIRT1 results in deacetylation and inactivation of the nuclear NF-κB p65. These findings illustrate that circ-Sirt1 is a novel non-coding RNA regulator of VSMC phenotype.


Asunto(s)
MicroARNs/genética , MicroARNs/metabolismo , Músculo Liso Vascular/metabolismo , Sirtuina 1/genética , Animales , Traumatismos de las Arterias Carótidas/genética , Traumatismos de las Arterias Carótidas/patología , Proliferación Celular/genética , Citoplasma/genética , Regulación de la Expresión Génica/genética , Humanos , Inflamación/genética , Inflamación/patología , Ratones , Músculo Liso Vascular/patología , Inhibidor NF-kappaB alfa/genética , FN-kappa B/genética , Proteínas de Unión al ARN , Ratas , Transducción de Señal , Factor de Transcripción ReIA/genética , Factor de Necrosis Tumoral alfa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA