Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 48
1.
Sci Adv ; 10(17): eadj6814, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38669329

We aimed to identify serum biomarkers that predict knee osteoarthritis (OA) before the appearance of radiographic abnormalities in a cohort of 200 women. As few as six serum peptides, corresponding to six proteins, reached AUC 77% probability to distinguish those who developed OA from age-matched individuals who did not develop OA up to 8 years later. Prediction based on these blood biomarkers was superior to traditional prediction based on age and BMI (AUC 51%) or knee pain (AUC 57%). These results identify a prolonged molecular derangement of joint tissue before the onset of radiographic OA abnormalities consistent with an unresolved acute phase response. Among all 24 protein biomarkers predicting incident knee OA, the majority (58%) also predicted knee OA progression, revealing the existence of a pathophysiological "OA continuum" based on considerable similarity in the molecular pathophysiology of the progression to incident OA and the progression of established OA.


Biomarkers , Disease Progression , Osteoarthritis, Knee , Humans , Biomarkers/blood , Female , Osteoarthritis, Knee/metabolism , Osteoarthritis, Knee/diagnostic imaging , Osteoarthritis, Knee/physiopathology , Middle Aged , Aged
2.
Math Biosci Eng ; 21(2): 2787-2812, 2024 Jan 24.
Article En | MEDLINE | ID: mdl-38454707

In response to the problem of coverage redundancy and coverage holes caused by the random deployment of nodes in wireless sensor networks (WSN), a WSN coverage optimization method called GARWOA is proposed, which combines the genetic algorithm (GA) and reinforced whale optimization algorithm (RWOA) to balance global search and local development performance. First, the population is initialized using sine map and piecewise linear chaotic map (SPM) to distribute it more evenly in the search space. Secondly, a non-linear improvement is made to the linear control factor 'a' in the whale optimization algorithm (WOA) to enhance the efficiency of algorithm exploration and development. Finally, a Levy flight mechanism is introduced to improve the algorithm's tendency to fall into local optima and premature convergence phenomena. Simulation experiments indicate that among the 10 standard test functions, GARWOA outperforms other algorithms with better optimization ability. In three coverage experiments, the coverage ratio of GARWOA is 95.73, 98.15, and 99.34%, which is 3.27, 2.32 and 0.87% higher than mutant grey wolf optimizer (MuGWO), respectively.

3.
Ann Hematol ; 102(6): 1323-1332, 2023 Jun.
Article En | MEDLINE | ID: mdl-37046065

Heme oxygenase 1 (HO-1), encoded by the HMOX-1 gene, is the main heme oxygenase that catalyzes the degradation of heme into iron, carbon monoxide, and biliverdin. HMOX-1 gene expression is stimulated by oxidative stress and regulated at transcriptional and post-transcriptional levels. After translation, subcellular location and protein stability of HO-1 are also altered by different extracellular and intracellular stimuli. HO-1 plays a key role in regulating iron homeostasis and cell protection and has become a new target for disease treatment. Erythropoiesis is a tightly controlled, iron-dependent process that begins with hematopoietic stem cells and maturates to red blood cells. HO-1 is expressed in hematopoietic stem/progenitor cells, hematopoietic niche cells, erythroblasts, and especially erythroblastic island and phagocytic macrophages. HO-1 functions importantly in the entire erythroid development process by influencing hematopoietic stem cell proliferation, erythroid lineage engagement, terminal erythroid differentiation, and even senescent RBC erythrophagocytosis. HO-1 is also related to stress erythropoiesis and certain red blood cell diseases. Elucidation of HO-1 regulation and function in erythropoiesis will be of great significance for the treatment of related diseases.


Erythropoiesis , Heme Oxygenase-1 , Humans , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Erythropoiesis/genetics , Iron/metabolism , Erythrocytes/metabolism , Heme
4.
Br J Haematol ; 201(5): 982-994, 2023 06.
Article En | MEDLINE | ID: mdl-36872867

Beta-thalassaemia is an inherited haemoglobin disorder characterised by ineffective erythropoiesis (IE). The detailed pathogenesis of IE remains unclear. In this study, we used single-cell RNA sequencing (scRNA-seq) to examine IE in Th3/+ ß-thalassaemic mice. The results showed that the erythroid group was remarkably expanded, and genes involved in biological processes such as iron metabolism, haeme synthesis, protein folding, and response to heat were significantly upregulated from erythroid progenitors to reticulocytes in ß-thalassaemic mice. In particular, we identified a unique cell population close to reticulocytes, named ThReticulocytes, characterised by a high level of heat shock protein 70 (Hsp70) expression and dysregulation of iron metabolism and haeme synthesis signalling. Treatment of ß-thalassaemic mice with the haeme oxygenase inhibitor tin-mesoporphyrin effectively improved the iron disorder and IE, and the ThReticulocyte population and Hsp70 expression were significantly suppressed. This study revealed in detail the progression of IE at the single-cell level and possibly provided clues to find therapeutic targets in thalassaemia.


Thalassemia , beta-Thalassemia , Mice , Animals , beta-Thalassemia/metabolism , Erythropoiesis , Reticulocytes/metabolism , Iron/metabolism
5.
Alzheimers Dement ; 19(7): 3148-3157, 2023 07.
Article En | MEDLINE | ID: mdl-36738287

INTRODUCTION: Our understanding of the genetic predisposition for age-at-onset (AAO) of Alzheimer's disease (AD) is limited. Here, we sought to identify genes modifying AAO and examined whether any have sex-specific effects. METHODS: Genome-wide association analysis were performed on imputed genetic data of 9219 AD cases and 10,345 controls from 20 cohorts of the Alzheimer's Disease Genetics Consortium. AAO was modeled from cases directly and as a survival outcome. RESULTS: We identified 11 genome-wide significant loci (P < 5 × 10-8 ), including six known AD-risk genes and five novel loci, UMAD1, LUZP2, ARFGEF2, DSCAM, and 4q25, affecting AAO of AD. Additionally, 39 suggestive loci showed strong association. Twelve loci showed sex-specific effects on AAO including CD300LG and MLX/TUBG2 for females and MIR4445 for males. DISCUSSION: Genes that influence AAO of AD are excellent therapeutic targets for delaying onset of AD. Several loci identified include genes with promising functional implications for AD.


Alzheimer Disease , Genome-Wide Association Study , Male , Female , Humans , Alzheimer Disease/genetics , Age of Onset , Genetic Predisposition to Disease/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , DNA-Binding Proteins/genetics
6.
Cancers (Basel) ; 15(1)2023 Jan 01.
Article En | MEDLINE | ID: mdl-36612296

Currently, research for hematological malignancies is very intensive, with many breakthroughs. Among them, aptamer-based targeted therapies could be counted. Aptamer is a targeting tool with many unique advantages (easy synthesis, low toxicity, easy modification, low immunogenicity, nano size, long stability, etc.), therefore many experts screened corresponding aptamers in various hematological malignancies for diagnosis and treatment. In this review, we try to summarize and provide the recent progress of aptamer research in the diagnosis and treatment of hematologic malignancies. Until now, 29 aptamer studies were reported in hematologic malignancies, of which 12 aptamers were tested in vivo and the remaining 17 aptamers were only tested in vitro. In this case, 11 aptamers were combined with chemotherapeutic drugs for the treatment of hematologic malignancies, 4 aptamers were used in combination with nanomaterials for the diagnosis and treatment of hematologic malignancies, and some studies used aptamers for the targeted transportation of siRNA and miRNA for targeted therapeutic effects. Their research provides multiple approaches to achieve more targeted goals. These findings show promising and encouraging future for both hematological malignancies basic and clinical trials research.

7.
Sci Adv ; 9(4): eabq5095, 2023 01 25.
Article En | MEDLINE | ID: mdl-36696492

We aimed to identify markers in blood (serum) to predict clinically relevant knee osteoarthritis (OA) progression defined as the combination of both joint structure and pain worsening over 48 months. A set of 15 serum proteomic markers corresponding to 13 total proteins reached an area under the receiver operating characteristic curve (AUC) of 73% for distinguishing progressors from nonprogressors in a cohort of 596 individuals with knee OA. Prediction based on these blood markers was far better than traditional prediction based on baseline structural OA and pain severity (59%) or the current "best-in-class" biomarker for predicting OA progression, urinary carboxyl-terminal cross-linked telopeptide of type II collagen (58%). The generalizability of the marker set was confirmed in a second cohort of 86 individuals that yielded an AUC of 70% for distinguishing joint structural progressors. Blood is a readily accessible biospecimen whose analysis for these biomarkers could facilitate identification of individuals for clinical trial enrollment and those most in need of treatment.


Biomarkers , Osteoarthritis, Knee , Humans , Biomarkers/blood , Disease Progression , Osteoarthritis, Knee/diagnosis , Osteoarthritis, Knee/metabolism , Pain , Proteomics , Clinical Trials as Topic
8.
Bioact Mater ; 20: 166-178, 2023 Feb.
Article En | MEDLINE | ID: mdl-35663338

Skeletal muscle disorders have posed great threats to health. Selective delivery of drugs and oligonucleotides to skeletal muscle is challenging. Aptamers can improve targeting efficacy. In this study, for the first time, the human skeletal muscle-specific ssDNA aptamers (HSM01, etc.) were selected and identified with Systematic Evolution of Ligands by Exponential Enrichment (SELEX). The HSM01 ssDNA aptamer preferentially interacted with human skeletal muscle cells in vitro. The in vivo study using tree shrews showed that the HSM01 ssDNA aptamer specifically targeted human skeletal muscle cells. Furthermore, the ability of HSM01 ssDNA aptamer to target skeletal muscle cells was not affected by the formation of a disulfide bond with nanoliposomes in vitro or in vivo, suggesting a potential new approach for targeted drug delivery to skeletal muscles via liposomes. Therefore, this newly identified ssDNA aptamer and nanoliposome modification could be used for the treatment of human skeletal muscle diseases.

9.
Molecules ; 27(7)2022 Mar 25.
Article En | MEDLINE | ID: mdl-35408534

Tumor differentiation is a therapeutic strategy aimed at reactivating the endogenous differentiation program of cancer cells and inducing cancer cells to mature and differentiate into other types of cells. It has been found that a variety of natural small-molecule drugs can induce tumor cell differentiation both in vitro and in vivo. Relevant molecules involved in the differentiation process may be potential therapeutic targets for tumor cells. Compared with synthetic drugs, natural small-molecule antitumor compounds have the characteristics of wide sources, structural diversity and low toxicity. In addition, natural drugs with structural modification and transformation have relatively concentrated targets and enhanced efficacy. Therefore, using natural small-molecule compounds to induce malignant cell differentiation represents a more targeted and potential low-toxicity means of tumor treatment. In this review, we focus on natural small-molecule compounds that induce differentiation of myeloid leukemia cells, osteoblasts and other malignant cells into functional cells by regulating signaling pathways and the expression of specific genes. We provide a reference for the subsequent development of natural small molecules for antitumor applications and promote the development of differentiation therapy.


Leukemia, Myeloid , Neoplasms , Cell Differentiation , Humans , Neoplasms/drug therapy , Signal Transduction
10.
Oncogene ; 41(9): 1298-1308, 2022 02.
Article En | MEDLINE | ID: mdl-34997217

Despite the establishment of novel therapeutic interventions, multiple myeloma (MM) remains invariably incurable due to development of drug resistance and subsequent relapse, which are attributed to activation of oncogenic pathways such as autophagy. Deubiquitinating enzymes (DUBs) are promising targets to overcome resistance to proteasome inhibitor-based treatment. Ubiquitin-specific protease-12 (USP12) is a DUB with a known prognostic value in several cancers. We found that USP12 protein levels were significantly higher in myeloma patient samples than in non-cancerous human samples. Depletion of USP12 suppressed cell growth and clonogenicity and inhibited autophagy. Mechanistic studies showed that USP12 interacted with, deubiquitylated and stabilized the critical autophagy mediator HMGB1 (high mobility group box-1) protein. Knockdown of USP12 decreased the level of HMGB1 and suppressed HMGB1-mediated autophagy in MM. Furthermore, basal autophagy activity associated with USP12/HMGB1 was elevated in bortezomib (BTZ)-resistant MM cell lines. USP12 depletion, concomitant with a reduced expression of HMGB1, suppressed autophagy and increased the sensitivity of resistant cells to BTZ. Collectively, our findings have identified an important role of the deubiquitylase USP12 in pro-survival autophagy and resultant BTZ resistance in MM by stabilizing HMGB1, suggesting that the USP12/HMGB1 axis might be pursued as a potential diagnostic and therapeutic target in human MM.


Bortezomib
11.
Genet Epidemiol ; 46(1): 73-86, 2022 02.
Article En | MEDLINE | ID: mdl-34779034

Count data with excessive zeros are increasingly ubiquitous in genetic association studies, such as neuritic plaques in brain pathology for Alzheimer's disease. Here, we developed gene-based association tests to model such data by a mixture of two distributions, one for the structural zeros contributed by the Binomial distribution, and the other for the counts from the Poisson distribution. We derived the score statistics of the corresponding parameter of the rare variants in the zero-inflated Poisson regression model, and then constructed burden (ZIP-b) and kernel (ZIP-k) tests for the association tests. We evaluated omnibus tests that combined both ZIP-b and ZIP-k tests. Through simulated sequence data, we illustrated the potential power gain of our proposed method over a two-stage method that analyzes binary and non-zero continuous data separately for both burden and kernel tests. The ZIP burden test outperformed the kernel test as expected in all scenarios except for the scenario of variants with a mixture of directions in the genetic effects. We further demonstrated its applications to analyses of the neuritic plaque data in the ROSMAP cohort. We expect our proposed test to be useful in practice as more powerful than or complementary to the two-stage method.


Models, Genetic , Models, Statistical , Binomial Distribution , Humans , Phenotype , Poisson Distribution
12.
Blood Coagul Fibrinolysis ; 32(8): 584-590, 2021 Dec 01.
Article En | MEDLINE | ID: mdl-34693916

Subclinical bleeding is a haemorrhage event not clinically detected in haemophilia, and no reliable method is available for predicting subclinical bleeding. We investigated whether haemophilia mice have subclinical haemorrhage and evaluated potential biomarkers including multiple cytokine changes to predict subclinical haemorrhage. Plasma from naïve FVIII-/- and FIX-/- mice and their wild-type counterparts (FVIII WT and FIX WT, respectively) were measured for prothrombin fragment 1 + 2 (F1 + 2) and multiple cytokines. Haemophilia mice with induced hemarthrosis were used as positive clinical bleeding controls. Naive haemophilia mice that displayed higher levels than positive bleeding control were counted. Univariate and multivariate analyses of cytokines were performed. Compared with wild-type mice (FVIII WT 1.1-6.2 vs. FIX WT 2.7-6.7 pmol/l), F1 + 2 widely varied in both haemophilia mouse strains (FVIII-/- 3.7-25.7 vs. FIX-/- 2.7-15.7 pmol/l). Each cytokine varied widely in both naive haemophilia A and B mice, but not significantly, for most cytokines. In comparison to haemophilia mice with hemarthrosis bleeding challenge, naive FVIII-/- mice had elevated pro-inflammatory cytokines and FIX-/- mice had elevated anti-inflammatory cytokines. In addition, interleukin (IL)-4, followed by IL-1, IL-6, TNF-α and MIP-1α in FVIII-/- mice and MIP-1α, followed by IL-1, IL-10 in FVIII-/- mice exhibited significant differences potentially associated with potential subclinical bleeding. Naive haemophilia mice showed elevated pro-inflammatory cytokines with different patterns, represented by pro-inflammatory cytokine elevation in more naïve FVIII-/- mice and more anti-inflammatory cytokines in FIX-/- mice.


Hemophilia A , Animals , Cytokines , Factor VIII/genetics , Hemarthrosis , Hemophilia A/genetics , Hemorrhage , Mice
13.
Curr Mol Med ; 21(10): 819-831, 2021.
Article En | MEDLINE | ID: mdl-33475071

Acute erythroid leukemia (AEL) is a subtype of acute myeloid leukemia (AML) with features such as accumulation of maturation-arrested erythroblasts. Compared with AML, the progression of AEL is faster and the prognosis to available therapy is worse. However, its categorization is still being updated and the pathophysiology of AEL is still under research, making diagnosis and chemotherapy challenging for physicians. To achieve better outcomes, therapies should be optimized and new drugs should be developed. In this review, we summarize current strategies of diagnosis and therapies of AEL, and discuss prospective targets for chemotherapeutic agents based on the biological characteristics of AEL neoplastic cells as well as transcriptional factors and pathways related to erythroid differentiation.


Cell Differentiation/genetics , Leukemia, Erythroblastic, Acute , Mutation , Neoplasm Proteins , Transcription Factors , Humans , Leukemia, Erythroblastic, Acute/drug therapy , Leukemia, Erythroblastic, Acute/genetics , Leukemia, Erythroblastic, Acute/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
14.
Phytother Res ; 35(4): 2157-2170, 2021 Apr.
Article En | MEDLINE | ID: mdl-33274566

Chronic myelomonocytic leukemia (CML) is a myeloid tumor characterized by MDS (myelodysplastic syndrome) and MPN (myeloproliferative neoplasms). Allogeneic hematopoietic stem cell transplantation, chemotherapy, interferon, and targeted therapy are the main treatment methods for CML. Tyrosine kinase inhibitors (TKIs) are also a treatment option, and patients are currently recommended to take these drugs throughout their lives to prevent CML recurrence. Therefore, there is a need to investigate and identify other potential chemotherapy drugs. Currently, research on CML treatment with a single drug has shown little progress. Fingolimod (FTY720), an FDA-approved drug used to treat relapsing multiple sclerosis, has also shown great potential in the treatment of lymphocytic leukemia. In our study, we find that FTY720 and curcumol have a significant inhibitory effect on K562 cells, K562/ADR cells, and CD34+ cells from CML patients. RNAseq data analysis shows that regulation of apoptosis and differentiation pathways are key pathways in this process. Besides, BCR/ABL-Jak2/STAT3 signaling, PI3K/Akt-Jnk signaling, and activation of BH3-only genes are involved in CML inhibition. In a K562 xenograft mouse model, therapy with curcumol and FTY720 led to significant inhibition of tumor growth and induction of apoptosis. To summarize, curcumol and FTY720 synergistically inhibit proliferation involved in differentiation and induce apoptosis in CML cells. Therefore, synergistic treatment with two drugs could be the next choice of treatment for CML.


Fingolimod Hydrochloride/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Sesquiterpenes/therapeutic use , Animals , Apoptosis , Cell Differentiation , Cell Proliferation , Disease Models, Animal , Fingolimod Hydrochloride/pharmacology , Humans , Mice , Sesquiterpenes/pharmacology , Signal Transduction
15.
J Food Sci ; 85(3): 800-807, 2020 Mar.
Article En | MEDLINE | ID: mdl-32090345

The aim of this study is to observe the effects of Ninghong black tea extract on fat deposition and high-fat diet-induced nonalcoholic fatty liver disease (NAFLD) and to explore the potential mechanisms of these effect. Under 2% Ninghong black tea extract diet feeding in rat model, the results showed that Ninghong black tea extract decreased the body fat ratio and the number of lipid droplets in the liver and significantly alleviated NAFLD in the rat model. The real-time fluorescence quantitative polymerase chain reaction results showed that Ninghong black tea extract significantly upregulated the expression of peroxisome proliferator-activated receptor α (PPARα), which is important in fatty acid ß-oxidation, and microsomal triglyceride transfer protein (MTP), which plays an important role in the synthesis of very low density lipoprotein (VLDL). By promoting the expression of PPARα and MTP in liver tissue and thereby promoting fatty acid ß-oxidation and VLDL synthesis, Ninghong black tea extract relieves high-fat diet-induced NAFLD.


Non-alcoholic Fatty Liver Disease/drug therapy , Plant Extracts/administration & dosage , Animals , Camellia sinensis/chemistry , Carrier Proteins/genetics , Carrier Proteins/metabolism , Diet, High-Fat/adverse effects , Humans , Lipid Metabolism/drug effects , Liver/metabolism , Male , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , PPAR alpha/genetics , PPAR alpha/metabolism , Plant Leaves/chemistry , Rats , Rats, Sprague-Dawley
16.
Mol Ther Nucleic Acids ; 18: 727-738, 2019 Dec 06.
Article En | MEDLINE | ID: mdl-31726389

Melanoma is a highly aggressive tumor with a poor prognosis, and half of all melanoma patients harbor BRAF mutations. A BRAF inhibitor, vemurafenib (PLX4032), has been approved by the US Food and Drug Administration (FDA) and European Medicines Agency (EMA) to treat advanced melanoma patients with BRAFV600E mutation. However, the efficacy of vemurafenib is impeded by adaptive resistance in almost all patients. In this study, using a cell-based SELEX (systematic evolution of ligands by exponential enrichment) strategy, we obtained a DNA aptamer (named LL4) with high affinity and specificity against vemurafenib-resistant melanoma cells. Optimized truncated form (LL4A) specifically binds to vemurafenib-resistant melanoma cells with dissociation constants in the nanomolar range and with excellent stability and low toxicity. Meanwhile, fluorescence imaging confirmed that LL4A significantly accumulated in tumors formed by vemurafenib-resistant melanoma cells, but not in control tumors formed by their corresponding parental cells in vivo. Further, a transmembrane protein CD63 was identified as the binding target of aptamer LL4A using a pull-down assay combined with the liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. CD63 formed a supramolecular complex with TIMP1 and ß1-integrin, activated the nuclear factor кB (NF-кB) and mitogen-activated protein kinase (MAPK) signaling pathways, and contributed to vemurafenib resistance. Potentially, the aptamer LL4A may be used diagnostically and therapeutically in humans to treat targeted vemurafenib-resistant melanoma.

18.
Cell Signal ; 60: 136-145, 2019 08.
Article En | MEDLINE | ID: mdl-31034872

Multiple myeloma (MM) is hematological malignancy characterized by clonal proliferation of malignant plasma cells in the bone marrow environment. Previously, we identified DAZAP2 as a candidate cancer suppressor gene, the downregulation of which is regulated by its own promoter methylation status. In the current study, we analyzed the DAZAP2 promoter in MM cell lines KM3, MM.1S, OPM-2, and ARH77 by bisulfite genomic sequencing assay. We identified the binding site for transcription factor cyclic adenosine monophosphate response element binding (CREB) in the DAZAP2 promoter CpG2, and we found that hypermethylation of the CREB binding motif in the DAZAP2 promoter is responsible for the reduced DAZAP2 expression in MM cells. Later we checked the p38/MAPK signaling cascade, which is reported to regulate expression and function of CREB. Our results showed that the p38/MAPK signaling pathway drives the expression of DAZAP2 by phosphorylation of CREB, and hypermethylation of CREB binding motif in DAZAP2 promoter can inhibit binding of CREB to the latter, thus downregulating DAZAP2 expression. Moreover, treating the MM cells with 5-aza-2' deoxycytidine to demethylate DAZAP2 promoter restored the binding of CREB to its binding motif, and thus upregulated DAZAP2 expression. Our results not only identified DAZAP2 as a new downstream target of p38/MAPK/CREB signaling cascade, but we also clarified that the downregulation of DAZAP2 in MM cells is caused by hypermethylation of CREB binding motif in its own promoter region, which implies that demethylation of DAZAP2 promoter can be a novel therapeutic strategy for MM treatment.


Gene Expression Regulation, Neoplastic/physiology , MAP Kinase Signaling System/physiology , Multiple Myeloma/metabolism , RNA-Binding Proteins/genetics , Cell Line, Tumor , DNA Methylation , Humans , Promoter Regions, Genetic
19.
Curr Mol Med ; 19(1): 54-75, 2019.
Article En | MEDLINE | ID: mdl-30854966

OBJECTIVE: The relationship between OCT4 and clinicopathological features in lung cancer is shown to be controversial in recent publications. Therefore, we conducted this meta-analysis to quantitatively investigate the prognostic and clinicopathological characteristics of OCT4 in lung cancer. METHODS: A comprehensive literature search of the PubMed, EMBASE, Cochrane Library, WOS, CNKI and Wanfang databases was performed to identify studies. Correlations between OCT4 expression and survival outcomes or clinicopathological features were analyzed using meta-analysis methods. RESULTS: Twenty-one studies with 2523 patients were included. High OCT4 expression showed a poorer overall survival (OS) (univariate: HR= 2.00, 95% CI = (1.68, 2.39), p<0.0001; multivariate: HR= 2.43, 95% CI = (1.67, 3.55), p<0.0001) and median overall survival (MSR = 0.51, 95% CI = (0.44, 0.58), p < 0.0001), disease-free survival (DFS) (HR= 2.18, 95% CI = (1.30, 3.67), p = 0.003) and poorer disease-specific survival (DSS) (HR= 2.23, 95% CI = (1.21, 4.11), p = 0.010). Furthermore, high OCT4 expression was found to be related with lower 5 year disease-specific survival rate (OR= 0.24, 95% CI = (0.14, 0.41), p<0.0001) and 10 year overall survival rate (OR= 0.22, 95% CI = (0.12, 0.40), p=0.0001). Additionally, OCT4-high expression was also strongly associated with higher clinical TNM stage, lymph node metastasis, tumor distant metastasis, higher histopathologic grade, but not related with gender, smoking status, tumor size and histologic type of lung cancer. CONCLUSION: OCT4 over-expression in lung cancer was strongly related to poorer clinicopathological features and worse survival outcomes, which suggests that OCT4 could be a valuable prognostic marker in lung cancer.


Biomarkers, Tumor/genetics , Lung Neoplasms/genetics , Octamer Transcription Factor-3/genetics , Prognosis , Disease-Free Survival , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Lung Neoplasms/pathology , Male , Neoplasm Metastasis , Neoplasm Staging , Sex Characteristics
20.
Cancer Manag Res ; 11: 2059-2072, 2019.
Article En | MEDLINE | ID: mdl-30881130

BACKGROUND: Growing evidence has indicated that the long noncoding RNA H19 (lncRNA H19), frequently deregulated in almost all tumor types tested, acted as a pivotal contributor to both cancer initiation and progression. However, the role of lncRNA H19 in human papillary thyroid carcinoma (PTC) remains controversial. The aim of the study was to investigate the expression and potential function of lncRNA H19 in human PTC. PATIENTS AND METHODS: The lncRNA H19 level was determined by quantitative real-time (RT)-PCR analyses in 58 PTC tissue samples and their paired paracancerous tissue samples. RNA interference, RT-PCR analysis, and Western blot assay were used to determine the impact of lncRNA H19 on epithelial-mesenchymal transition (EMT) markers in human PTC cells. The migratory and invasive capacities of PTC cells were determined by wound-healing and transwell migration and invasion assays. RESULTS: lncRNA H19 expression was 2.417-fold higher in PTC tissues than their paired paracancerous tissue (95% CI: 1.898-2.935, P<0.0001). Higher level of lncRNA H19 was correlated to elevated expression of Vimentin, ZEB2, Twist, and Snail2. Inhibition of lncRNA H19 resulted in upregulation of E-cadherin and downregulation of Vimentin both at mRNA and protein levels. Conversely, enforced expression of the exogenous lncRNA H19 led to E-cadherin mRNA and protein downregulation and relative upregulation of Vimentin. Moreover, wound-healing and transwell migration and invasion assays showed that lncRNA H19 could promote the migratory and invasive abilities of PTC cells. CONCLUSION: The level of lncRNA H19 was significantly higher in PTC tissues than paired paracancerous tissue or normal tissues. Overexpression of lncRNA H19 was correlated with higher tumor burden of PTC. It also contributes to EMT process, as well as promotes migration and invasion of PTC cells.

...