Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Appl Microbiol ; 135(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39152088

RESUMEN

AIMS: Carbon source is a necessary nutrient for bacterial strain growth. In industrial production, the cost of using different carbon sources varies greatly. Moreover, the complex environment in space may cause metabolic a series of changes in the strain, and this method has been successfully applied in some basic research. To date, space mutagenesis is still limited number of studies, particularly in carbon metabolism of probiotics. METHODS AND RESULTS: HG-R7970-41 was isolated from bacterium suspension (Probio-M9) after space flight, which can produce capsular polysaccharide after space mutagenesis. Phenotype Microarray (PM) was used to evaluated the metabolism of HG-R7970-41 in 190 single carbon sources. RNA sequencing and total protein identification of two strains revealed their different carbon metabolism mechanisms. PM results demonstrated the metabolism of 10 carbon sources were different between Probio-M9 and HG-R7970-41. Transcriptomic and proteomic analyses revealed that this change in carbon metabolism of HG-R7970-41 mainly related to changes in phosphorylation and the glycolysis pathway. Based on the metabolic mechanism of different carbon sources and related gene cluster analysis, we found that the final metabolic activities of HG-R7970-41 and Probio-M9 were mainly regulated by PTS-specific membrane embedded permease, carbohydrate kinase and two rate-limiting enzymes (phosphofructokinase and pyruvate kinase) in the glycolysis pathway. The expanded culture test also confirmed that HG-R7970-41 had different metabolic characteristics from original strain. CONCLUSIONS: These results suggested that space environment could change carbon metabolism of Probio-M9. The new isolate (HG-R7970-41) showed a different carbon metabolism pattern from the original strain mainly by the regulation of two rate-limiting enzymes.


Asunto(s)
Carbono , Lacticaseibacillus rhamnosus , Carbono/metabolismo , Lacticaseibacillus rhamnosus/genética , Lacticaseibacillus rhamnosus/metabolismo , Lacticaseibacillus rhamnosus/aislamiento & purificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Mutación , Mutagénesis , Proteómica , Probióticos/metabolismo , Transcriptoma
2.
J Exp Clin Cancer Res ; 43(1): 149, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38778379

RESUMEN

BACKGROUND: Prostate cancer (PCa) incidence and mortality rates are rising. Our previous research has shown that the combination of icariin (ICA) and curcumol (CUR) induced autophagy and ferroptosis in PCa cells, and altered lipid metabolism. We aimed to further explore the effects of the combination of ICA and CUR on gut microbiota, metabolism, and immunity in PCa. METHODS: A mouse subcutaneous RM-1 cell tumor model was established. 16 S rRNA sequencing was performed to detect changes in fecal gut microbiota. SCFAs in mouse feces, and the effect of ICA-CUR on T-cell immunity, IGFBP2, and DNMT1 were examined. Fecal microbiota transplantation (FMT) was conducted to explore the mechanism of ICA-CUR. Si-IGFBP2 and si/oe-DNMT1 were transfected into RM-1 and DU145 cells, and the cells were treated with ICA-CUR to investigate the mechanism of ICA-CUR on PCa development. RESULTS: After treatment with ICA-CUR, there was a decrease in tumor volume and weight, accompanied by changes in gut microbiota. ICA-CUR affected SCFAs and DNMT1/IGFBP2/EGFR/STAT3/PD-L1 pathway. ICA-CUR increased the positive rates of CD3+CD8+IFN-γ, CD3+CD8+Ki67 cells, and the levels of IFN-γ and IFN-α in the serum. After FMT (with donors from the ICA-CUR group), tumor volume and weight were decreased. SCFAs promote tumor development and the expression of IGFBP2. In vitro, DNMT1/IGFBP2 promotes cell migration and proliferation. ICA-CUR inhibits the expression of DNMT1/IGFBP2. CONCLUSIONS: ICA-CUR mediates the interaction between gut microbiota and the DNMT1/IGFBP2 axis to inhibit the progression of PCa by regulating immune response and metabolism, suggesting a potential therapeutic strategy for PCa.


Asunto(s)
Linfocitos T CD8-positivos , ADN (Citosina-5-)-Metiltransferasa 1 , Microbioma Gastrointestinal , Neoplasias de la Próstata , Animales , Ratones , Masculino , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Humanos , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/inmunología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/tratamiento farmacológico , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Flavonoides/farmacología , Flavonoides/uso terapéutico , Modelos Animales de Enfermedad
3.
Exp Ther Med ; 27(5): 232, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38628654

RESUMEN

Ferroptosis is a form of regulatory cell death that relies on iron and reactive oxygen species (ROS) to inhibit tumors. The present study aimed to investigate whether icariin-curcumol could be a novel ferroptosis inducer in tumor inhibition. Various concentrations of icariin-curcumol were used to stimulate prostate cell lines (RWPE-2, PC-3, VCAP and DU145). Small interfering negative control (si-NC) and si-nuclear factor erythroid 2-related factor 2 (Nrf2) were used to transfect DU145 cells. Cell viability was determined by using cell counting kit-8. Ferroptosis-related factor levels were analyzed using western blotting and reverse transcription-quantitative PCR. Enzyme-linked immunosorbent assays were used to assess the ferrous (Fe2+), glutathione and malondialdehyde (MDA) content. The ROS fluorescence intensity was assessed using flow cytometry. DU145 cells were most sensitive to icariin-curcumol concentration. The Fe2+ content, ROS fluorescence intensity and MDA level gradually increased, while solute carrier family 7 member 11 (SLC7A11) level, glutathione peroxidase 4 (GPX4) level, GSH content, Nrf2 and heme oxygenase-1 (HO-1) decreased with icariin-curcumol in a dose-dependent manner. After si-Nrf2 was transfected, the cell proliferation ability, SLC7A11 and GPX4 levels declined compared with the si-NC group. In contrast to the control group, the icariin + curcumol group showed reductions in Nrf2 and HO-1 levels, cell proliferation, SLC7A11 and GPX4 levels, with an increase in Fe2+ content and ROS fluorescence intensity. Overexpression of Nrf2 reversed the regulation observed in the icariin + curcumol group. Icariin-curcumol induced ferroptosis in PCa cells, mechanistically by inhibiting the Nrf2/HO-1 signaling pathway. Icariin-curcumol could be used as a new type of ferroptosis inducer to treat PCa effectively.

4.
Zhongguo Zhong Yao Za Zhi ; 48(24): 6702-6710, 2023 Dec.
Artículo en Chino | MEDLINE | ID: mdl-38212030

RESUMEN

This study aims to explore the influence of Polygonati Rhizoma on the pyroptosis in the rat model of diabetic macroangiopathy via the NOD-like receptor thermal protein domain associated protein 3(NLRP3)/cysteinyl aspartate specific proteinase-1(caspase-1)/gasdermin D(GSDMD) pathway. The rat model of diabetes was established by intraperitoneal injection of streptozotocin(STZ) combined with a high-fat, high-sugar diet. The blood glucose meter, fully automated biochemical analyzer, hematoxylin-eosin(HE) staining, enzyme-linked immunosorbent assay, immunofluorescence, immunohistochemistry, and Western blot were employed to measure blood glucose levels, lipid levels, vascular thickness, inflammatory cytokine levels, and expression levels of pyroptosis-related proteins. The mechanism of pharmacological interventions against the injury in the context of diabetes was thus explored. The results demonstrated the successful establishment of the model of diabetes. Compared with the control group, the model group showed elevated levels of fasting blood glucose, total cholesterol(TC), triglycerides(TG) and low-density lipoprotein cholesterol(LDL-c), lowered level of high-density lipoprotein cholesterol(HDL-c), thickened vascular intima, and elevated serum and aorta levels of tumor necrosis factor-α(TNF-α), interleukin-1ß(IL-1ß) and interleukin-18(IL-18). Moreover, the model group showed increased NLRP3 inflammasomes and up-regulated levels of caspase-1 and GSDMD in aortic vascular cells. Polygonati Rhizoma intervention reduced blood glucose and lipid levels, inhibited vascular thickening, lowered the levels of TNF-α, IL-1ß, IL-18 in the serum and aorta, attenuated NLRP3 inflammasome expression, and down-regulated the expression levels of caspase-1 and GSDMD, compared with the model group. In summary, Polygonati Rhizoma can slow down the progression of diabetic macroangiopathy by inhibiting pyroptosis and alleviating local vascular inflammation.


Asunto(s)
Complicaciones de la Diabetes , Diabetes Mellitus , Enfermedades Vasculares , Animales , Ratas , Caspasa 1/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Interleucina-18 , Glucemia , Piroptosis , Factor de Necrosis Tumoral alfa , Inflamasomas , Colesterol , Lípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA