Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 225
1.
Anal Chem ; 96(19): 7353-7359, 2024 May 14.
Article En | MEDLINE | ID: mdl-38690857

Accurate detection of multiple cardiovascular biomarkers is crucial for the timely screening of acute coronary syndrome (ACS) and differential diagnosis from acute aortic syndrome (AAS). Herein, an antibody microarray-based metal-enhanced fluorescence assay (AMMEFA) has been developed to quantitatively detect 7 cardiovascular biomarkers through the formation of a sandwich immunoassay on the poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate)-decorated GNR-modified slide (GNR@P(GMA-HEMA) slide). The AMMEFA exhibits high specificity and sensitivity, the linear ranges span 5 orders of magnitude, and the limits of detection (LODs) of cardiac troponin I (cTnI), heart-type fatty acid binding protein (H-FABP), C-reactive protein (CRP), copeptin, myoglobin, D-Dimer, and N-terminal pro-brain natriuretic peptide (NT-proBNP) reach 0.07, 0.2, 65.7, 0.6, 0.2, 8.3, and 0.3 pg mL-1, respectively. To demonstrate its practicability, the AMMEFA has been applied to quantitatively analyze 7 cardiovascular biomarkers in 140 clinical plasma samples. In addition, the expression levels of cardiovascular biomarkers were analyzed by the least absolute shrinkage and selector operator (LASSO) regression, and the area under receiver operator characteristic curves (AUCs) of healthy donors (HDs), ACS patients, and AAS patients are 0.99, 0.98, and 0.97, respectively.


Biomarkers , Humans , Biomarkers/blood , Biomarkers/analysis , Protein Array Analysis/methods , Limit of Detection , Immunoassay/methods , Fluorescence
2.
Sci Total Environ ; 932: 172878, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38697541

Excessive phosphorus (P) in eutrophic water induces cyanobacterial blooms that aggravate the burden of in-situ remediation measures. In order to ensure better ecological recovery, Flock & Lock technique has been developed to simultaneously sink cyanobacteria and immobilize P but requires a combination of flocculent and P inactivation agent. Here we synthesized a novel lanthanum-modified pyroaurite (LMP), as an alternative for Flock & Lock of cyanobacteria and phosphorus at the background of rich humic acid and suspended solids. LMP shows a P adsorption capacity of 36.0 mg/g and nearly 100 % removal of chlorophyll-a (Chl-a), turbidity, UV254 and P at a dosage (0.3 g/L) much lower than the commercial analogue (0.5 g/L). The resultant sediment (98.2 % as immobile P) exhibits sound stability without observable release of P or re-growth of cyanobacteria over a 50-day incubation period. The use of LMP also constrains the release of toxic microcystins to 1.4 µg/L from the sunk cyanobacterial cells, outperforming the commonly used polyaluminum chloride (PAC). Similar Flock & Lock efficiency could also be achieved in real eutrophic water. The outstanding Flock & Lock performance of LMP is attributable to the designed La modification. During LMP treatment, La acts as not only a P binder by formation of LaPO4, but also a coagulant to create a synergistic effect with pyroaurite. The controlled hydrolysis of surface La(III) over pyroaurite aided the possible formation of La(III)-pyroaurite networking structure, which significantly enhanced the Flock & Lock process through adsorption, charge neutralization, sweep flocculation and entrapment. In the end, the preliminary economic analysis is performed. The results demonstrate that LMP is a versatile and cost-effective agent for in-situ remediation of eutrophic waters.


Eutrophication , Lanthanum , Microcystis , Phosphorus , Lanthanum/chemistry , Water Pollutants, Chemical/analysis , Aluminum Hydroxide/chemistry , Adsorption , Environmental Restoration and Remediation/methods
3.
Orthop Surg ; 2024 May 01.
Article En | MEDLINE | ID: mdl-38693601

The floating toe deformity is classified as a forefoot deformity wherein the distal portion of the toe does not establish touch with the ground, resulting in a suspended or elevated position while the finger is in a relaxed state. At first, it garnered considerable interest as a complication It is worth noting that this condition is particularly common in children under the age of 8, which usually disappears as the individual reaches maturity. Studies have shown that with the aggravation of floating toe deformity, its adverse effects on patients' gait and overall quality of life also increase. Despite the prevalence of floating toe deformity in clinical settings, there is a lack of comprehensive literature investigating its underlying causes and potential preventive strategies. This scope review follows the preferred reporting items for systematic reviews and meta-analyses extension for scoping reviews (PRISMA-ScR) statement guidelines for scope reviews. The literature was obtained from various full-text databases, including China National Knowledge Infrastructure Database (CNKI), Wanfang Database, PubMed, and Web of Science Database. Our search focused on published literature related to floating toes, Weil osteotomy, and distal metatarsal osteotomy, up until March 1, 2023. The literature search and data analysis are conducted by two independent reviewers. If there are any disagreements, a third researcher will participate in the discussion and negotiate a decision. Furthermore, two experienced foot and ankle surgeons conducted a thorough literature analysis for this review. Sixty-two articles were included. Through the clinical analysis of the structural changes of the forefoot before and after operation, the classification of floating toe was described, the causes of pathological floating toe were summarized, and the possible intervention measures for the disease were put forward under the advice of foot and ankle surgery experts. We comprehensively summarize the current knowledge system about the etiology of floating toe and put forward the corresponding intervention strategy. We recommend that future studies will focus on the improvement of surgical procedures, such as the combination of Weil osteotomy, proximal interphalangeal (PIP) arthrodesis and flexor tendon arthrodesis.

4.
J Dairy Sci ; 2024 May 14.
Article En | MEDLINE | ID: mdl-38754818

Excessive concentrations of free fatty acids (FFA) are the main factors causing immune dysfunction and inflammation in dairy cows with ketosis. Polarization of macrophages (the process of macrophages freely switching from one phenotype to another) into M1 or M2 phenotypes is an important event during inflammation induced by environmental stimuli. In non-ruminants, mammalian target of rapamycin (mTOR)-mediated autophagy (a major waste degradation process) regulates macrophage polarization. Thus, the objective was to unravel the role of mTOR-mediated autophagy on macrophage polarization in ketotic dairy cows. Four experiments were performed as follows: (1) In vitro differentiated monocyte-derived macrophages from healthy dairy cows or dairy cows with clinical ketosis (CK) were treated with 100 ng/mL lipopolysaccharide (LPS) and 100 ng/mL interferon-γ (IFN-γ) or 10 ng/mL interleukin-4 (IL4) and 10 ng/mL interleukin-10 (IL10) for 24 h; (2) Immortalized bovine macrophages were treated with 0, 0.3, 0.6, 1.2 mM FFA and LPS and IFN-γ or IL4 and IL10 for 24 h; (3) Macrophages were pretreated with 2 µM 4,6-dimorpholino-N-(4-nitrophenyl)-1,3,5-triazin-2-amine (MHY1485) for 30 min before treatment with LPS and IFN-γ or IL4 and IL10; (4) Macrophages were pretreated with 100 nM rapamycin (RAPA) for 2 h before treatment with LPS and IFN-γ or IL4 and IL10. Compared with healthy cows, cows with CK had a greater mean fluorescence intensity (MFI) of CD86+, but lower MFI of CD206+ and lower number of autophagosomes and autolysosomes in macrophages. Exogenous FFA treatment upregulated protein abundance of inducible nitric oxide synthase (iNOS) and mean fluorescence intensity of CD86, whereas it downregulated the protein abundance of arginase 1 (ARG1) and mean fluorescence intensity of CD206. In addition, FFA increased the p-p65/p65 protein abundance and tumor necrosis factor α (TNFA), interleukin-1B (IL1B), and interleukin-6 (IL6) mRNA abundance, but decreased LC3-phosphatidylethanolamine conjugate (LC3-II) protein abundance and autophagosomes and autolysosomes number. Pretreatment with MHY1485 promoted macrophage M1 polarization and inhibited macrophage M2 polarization via decreased mTOR-mediated autophagy. Activation of mTOR-mediated autophagy by pretreatment with RAPA attenuated the upregulation of inflammation in M1 macrophages that was induced by FFA. These data revealed that high concentrations of FFA promote macrophage M1 polarization in ketotic dairy cows via impairing mTOR-mediated autophagy.

5.
Opt Lett ; 49(9): 2429-2432, 2024 May 01.
Article En | MEDLINE | ID: mdl-38691736

To the best of our knowledge, the output performance of a self-Q-switched Tm:YAP laser has been controlled by adjusting the cavity length for the first time. By using a concise concave-flat cavity, a pulsed laser emitting at 1993 nm is produced without any additional modulation device. Under a stable self-Q-switched mode, the maximum average output power of 9.76 W is achieved from the laser when the incident pump power is 28.78 W, corresponding to a slope efficiency of 36.9% and an optical-to-optical conversion efficacy of 33.9%. Also, the narrowest pulse width of 485 ns at 48.97 kHz is obtained from the laser with a single pulse energy of 199.3 µJ. As far as we know, this laser has the highest average power and narrowest pulse width compared to other self-Q-switched Tm:YAP lasers.

6.
Zhongguo Gu Shang ; 37(4): 381-6, 2024 Apr 25.
Article Zh | MEDLINE | ID: mdl-38664209

OBJECTIVE: CT scans combined with Mimics software were used to measure femoral offset (FO), rotation center height (RCH) and lower leg length discrepancy (LLD) following total hip arthroplasty (THA), and the relationship between FO, RCH and LLD after THA is discussed. METHODS: Retrospective analysis was performed on 40 patients with unilateral THA who met standard cases from October 2020 to June 2022. There were 21 males and 19 females, 18 patients on the left side and 22 patients on the right side, aged range from 30 to 81 years old, with an average age of (58.90 ±14.13) years old, BMI ranged from 17.3 to 31.5 kg·m-2 with an average of (25.3±3.4) kg·m-2. There were 30 cases of femoral head necrosis (Ficat type Ⅳ), 2 cases of hip osteoarthritis (Tönnis type Ⅲ), 2 cases of developmental hip dislocation combined with end-stage osteoarthritis (Crowe type Ⅲ), and 6 cases of femoral neck fracture (Garden type Ⅳ). Three-dimensional CT reconstruction of pelvis was taken preoperative and postoperative, and three-dimensional reconstruction model was established after processing by Mimics software. FO, RCH and LLD were measured on the model. The criteria for FO reconstruction were as follows:postoperative bilateral FO difference less than 5 mm;the standard for equal length of both lower limbs was as follows:postoperative LLD difference less than 5 mm. RESULTS: Bilateral FO difference was positively correlated with LLD (r=0.744, P<0.001). Chi-square test was performed between the FO reconstructed group and the non-reconstructed eccentricity group:The results showed that the isometric ratio of lower limbs in the FO reconstructed group was significantly higher than that in the FO reconstructed group (χ2=6.320, P=0.012). The bilateral RCH difference was significantly negatively correlated with LLD(r=-0.877, P<0.001). There is a linear relationship between bilateral FO difference and bilateral RCH difference and postoperative LLD, and the linear regression equation is satisfied:postoperative LLD=0.038x-0.099y+0.257(x:postoperative bilateral FO difference, y:postoperative bilateral RCH difference; Unit:cm), F=77.993, R2=0.808, P=0.009. CONCLUSION: After THA, LLD increased with the increase of FO and decreased with the increase of RCH. The effect of lower limb isometric length can be obtained more easily by reconstruction of FO. There is a linear relationship between the bilateral FO difference and the bilateral RCH difference after THA and LLD, and the regression equation can provide a theoretical reference for judging LLD.


Arthroplasty, Replacement, Hip , Femur , Leg Length Inequality , Humans , Male , Female , Leg Length Inequality/etiology , Aged , Middle Aged , Arthroplasty, Replacement, Hip/methods , Aged, 80 and over , Retrospective Studies , Adult , Femur/surgery , Tomography, X-Ray Computed , Rotation , Osteoarthritis, Hip/surgery , Osteoarthritis, Hip/etiology
7.
Mol Ther ; 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38637990

Cancer immunotherapy has greatly improved the prognosis of tumor-bearing patients. Nevertheless, cancer patients exhibit low response rates to current immunotherapy drugs, such as PD1 and PDL1 antibodies. Cyclic dinucleotide analogs are a promising class of immunotherapeutic agents. In this study, in situ autologous tumor vaccines, composed of bis-2'-F-cGSASMP phosphonothioate isomers (FGA-di-pS-2 or FGA-di-pS-4) and cytidinyl/cationic lipids (Mix), were constructed. Intravenous and intratumoral injection of FGA-di-pS-2/Mix or FGA-di-pS-4/Mix enhanced the immunogenic cell death of tumor cells in vivo, leading to the exposure and presentation of whole tumor antigens, inhibiting tumor growth in both LLC and EO771 tumor in situ murine models and increasing their survival rates to 50% and 23%, respectively. Furthermore, the tumor-bearing mice after treatment showed potent immune memory efficacy and exhibited 100% protection against tumor rechallenge. Intravenous administration of FGA-di-pS-2/Mix potently promoted DC maturation, M1 macrophage polarization and CD8+ T cell activation and decreased the proportion of Treg cells in the tumor microenvironment. Notably, two doses of ICD-debris (generated by FGA-di-pS-2 or 4/Mix-treated LLC cells) protected 100% of mice from tumor growth. These tumor vaccines showed promising results and may serve as personalized cancer vaccinations in the future.

8.
J Integr Plant Biol ; 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38506424

The phytohormone jasmonate (JA) coordinates stress and growth responses to increase plant survival in unfavorable environments. Although JA can enhance plant UV-B stress tolerance, the mechanisms underlying the interaction of UV-B and JA in this response remain unknown. In this study, we demonstrate that the UV RESISTANCE LOCUS 8 - TEOSINTE BRANCHED1, Cycloidea and PCF 4 - LIPOXYGENASE2 (UVR8-TCP4-LOX2) module regulates UV-B tolerance dependent on JA signaling pathway in Arabidopsis thaliana. We show that the nucleus-localized UVR8 physically interacts with TCP4 to increase the DNA-binding activity of TCP4 and upregulate the JA biosynthesis gene LOX2. Furthermore, UVR8 activates the expression of LOX2 in a TCP4-dependent manner. Our genetic analysis also provides evidence that TCP4 acts downstream of UVR8 and upstream of LOX2 to mediate plant responses to UV-B stress. Our results illustrate that the UV-B-dependent interaction of UVR8 and TCP4 serves as an important UVR8-TCP4-LOX2 module, which integrates UV-B radiation and JA signaling and represents a new UVR8 signaling mechanism in plants.

9.
Sci Data ; 11(1): 297, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38491031

Poa pratensis L. (Poaceae) is a valuable grass across the north hemisphere, inhabiting diverse environments with wide altitudinal span, where ubiquitous various kinds of stresses. Phytohormones would be helpful to improve tolerance to abiotic and biotic stresses, but the responses of transcriptome regulation of P. pratensis to exogenous phytohormones application remain unclear. In this study, we explored the alteration of plant physiological responses by the application of phytohormones. Aiming to achieve this knowledge, we got full-length transcriptome data 42.76 Gb, of which 74.9% of transcripts were completed. Then used 27 samples representing four treatments conducted at two time points (1 h and 6 h after application) to generate RNA-seq data. 371 and 907 common DEGs were identified in response to four phytohormones application, respectively, these DEGs were involved in "plant hormone signal transduction", "carbon metabolism" and "plant-pathogen interaction". Finally, P. pratensis basic research can gain valuable information regarding the responses to exogenous application of phytohormones in physiological indicators and transcriptional regulations in order to facilitate the development of new cultivars.


Poa , Transcriptome , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Growth Regulators/pharmacology , Poa/genetics , Stress, Physiological
10.
J Dairy Sci ; 2024 Feb 21.
Article En | MEDLINE | ID: mdl-38395404

High-yielding dairy cows in early lactation often encounter difficulties in meeting the energy requirements essential for maintaining milk production. This is primarily attributed to insufficient dry matter intake, which consequently leads to sustained lipolysis of adipose tissue. Fatty acids released by lipolysis can disrupt metabolic homeostasis. Autophagy, an adaptive response to intracellular environmental changes, is considered a crucial mechanism for regulating lipid metabolism and maintaining a proper cellular energy status. Despite its close relationship with aberrant lipid metabolism and cyto-lipotoxicity in animal models of metabolic disorders, the precise function of diacylglycerol o-acyltransferase 1 (DGAT1) in bovine adipose tissue during periods of negative energy balance (NEB) is not fully understood. Particularly regarding its involvement in lipolysis and autophagy. The objective of the present study was to assess the impact of DGAT1 on both lipolysis and autophagy in bovine adipose tissue and isolated adipocytes. Adipose tissue and blood samples were collected from cows diagnosed as clinically ketotic (n = 15) or healthy (n = 15) following a veterinary evaluation based on clinical symptoms and serum concentrations of BHB, which were 3.19 mM (interquartile range = 0.20) and 0.50 mM (interquartile range = 0.06), respectively. Protein abundance of DGAT1 and phosphorylation levels of unc-51-like kinase 1 (ULK1), were greater in adipose tissue from cows with ketosis, whereas phosphorylation levels of phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and mammalian target of rapamycin (mTOR) were lower. Furthermore, when adipocytes isolated from the harvested adipose tissue of 15 healthy cows were transfected with DGAT1 overexpression adenovirus or DGAT1 small interfering RNA followed by exposure to epinephrine (EPI), it led to greater ratios and protein abundance of phosphorylated hormone-sensitive triglyceride lipase (LIPE) to total LIPE and adipose triglyceride lipase (ATGL), while inhibiting the protein phosphorylation levels of ULK1, PI3K, AKT and mTOR. Overexpression of DGAT1 in EPI-treated adipocytes reduced lipolysis and autophagy, whereas silencing DGAT1 further exacerbated EPI-induced lipolysis and autophagy. Taken together, these findings indicate that upregulation of DGAT1 may function as an adaptive response to suppress adipocytes lipolysis, highlighting the significance of maintaining metabolic homeostasis in dairy cows during periods of NEB.

11.
ACS Nano ; 18(8): 6413-6423, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38349943

Aqueous zinc-ion batteries emerge as a promising energy storage system with merits of high security, abundance, and being environmentally benign. But the low operating voltages of aqueous electrolytes restrict their energy densities. Previous reports have mostly focused on modifying the electrolytes to enlarge the operating voltages of aqueous zinc-ion batteries. However, either extra-expensive salts or potential safety hazards of organic additives are considered to be adverse for practical large-scale applications. Here, a proof-of-concept to enlarge the operating voltage of an aqueous zinc-ion battery by incorporating a well-designed semiconductor photocathode is proposed, which produces a photovoltage (Vph) across the semiconductor/liquid junction (SCLJ) interface to elevate the output voltage of zinc-ion battery under irradiation. The operating voltage of an aqueous zinc-ion battery can be markedly raised from 1.78 (thermodynamic limit) to 2.4 V when a BiOI nanoflake array photocathode with good surface modification is introduced, achieving a round-trip efficiency of 114.3% and a 34.8% increase of energy density compared to the theoretical value. The successive ionic layer adsorption and reaction modified surface effectively passivates surface trap defects of the BiOI photocathode and thus enlarges its Vph from 60 to 240 mV under irradiation. This study provides a design to enlarge the output voltages of aqueous zinc-ion batteries and other energy storage systems, providing insight into widening the voltage window, which is that the operating voltages are determined by photocathode under irradiation and not restricted by the electrochemical stability window of dilute aqueous electrolytes.

12.
Biosens Bioelectron ; 246: 115871, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38035516

Matrix metalloproteinases (MMPs) are attractive biomarkers for cancer diagnosis and treatment, while it is still a challenge to precise analysis of MMP activities owing to their very low abundance in the biological samples, especially at the early stages of tumors. Herein, a peptide microarray-based metal-enhanced fluorescence assay (PMMEFA) is proposed to simultaneously detect MMP-1, -2, -3, -7, -9, and -13 activities. The assay involves immobilization of Förster resonance energy transfer dye pair decorated peptides (FRET-peptides) on a poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) coated gold nanorod modified glass slide (GNR@P(GMA-HEMA)). To fabricate the GNR@P(GMA-HEMA) slide, GNRs are self-assembled onto an aminated glass slide, and a polymer brush (P(GMA-HEMA)) is grown through a surface-initiated atom transfer radical polymerization reaction (SI-ATRP). Upon the addition of MMPs, the FRET pairs are broken due to the specific cleavage of FRET-peptides by enzymes, resulting in the recovery of fluorescence signals and further enhancement by the MEF of GNRs. The fluorescence recovery degree provides a direct indicator for MMP activity. The PMMEFA exhibits excellent sensitivity, which enables to detect MMP-1, -2, -3, -7, -9, and -13 activities, with low limits of detection (LODs) of 1.7 fg mL-1, 0.3 fg mL-1, 2.0 fg mL-1, 1.8 fg mL-1, 2.2 fg mL-1 and 14.0 fg mL-1, respectively. To substantiate the practicability of PMMEFA, MMP activities were measured in a range of matrices, encompassing cell culture medium, serum, and tumor tissue homogenate, and MMP activities can be detected only in 0.15 µL serum and 0.025 mg tumor tissue.


Biosensing Techniques , Nanotubes , Neoplasms , Humans , Polymers , Matrix Metalloproteinase 1 , Gold , Peptides
13.
Small ; 20(2): e2308270, 2024 Jan.
Article En | MEDLINE | ID: mdl-37948414

It is an urgent problem to realize reliable microwave absorption materials (MAMs) with low density. To address this issue, a series of controlled experiments w ere carried out, which indicated that the tubular structure enables excellent microwave absorption properties with a lower powder filling rate. This performance is attributable to the combined dielectric and magnetic loss mechanisms provided by Co/C and the interface polarization facilitated by multiple heterogeneous interfaces. Particularly, Co@C nanotubes, benefiting from the enhanced heterointerface polarization due to their abundant specific surface area and the reduced electron migration barrier induced by their 1D stacked structure, effectively achieved a dual enhancement of dielectric loss and polarization loss at lower powder filling ratios. Furthermore, the magnetic coupling effect of magnetic nanoparticle arrays in tubular structures is demonstrated by micromagnetic simulation, which have been few reported elsewhere. These propertied enable Co@C nanotubes to achieve minimum reflection loss and maximum effective absorption broadband values of 61.0 dB and 5.5 GHz, respectively, with a powder filling ratio of 20 wt% and a thickness of 1.94 mm. This study reveals the significance of designing 1D structures in reducing powder filling ratio and matching thickness, providing valuable insights for developing MAMs with different microstructures.

14.
Small Methods ; 8(3): e2301006, 2024 Mar.
Article En | MEDLINE | ID: mdl-38009527

It is reported that self-heating-induced healing on lithium metal anodes (LMAs) provides a mitigation strategy for suppressing Li dendrites. However, how to boost the self-heating-induced healing of Li-dendrites and incorporate it into Li-host design remains an imminent problem that needs to be solved. Herein, a new bismuth nanosphere semi-buried carbon cloth (Bi-NS-CC) material with a 3D flexible host structure is proposed. The ultrasmall Bi nanospheres are uniformly and densely distributed on carbon fiber, providing active sites to form uniform Li3 Bi alloy with molten lithium, thereby guiding the injection of molten metallic lithium into the 3D structure to form a self-supporting composite LMAs. The ingenious semi-embedded structure with strong interfacial C─Bi ensures superior mechanical properties. Interestingly, when the current density reaches up to 10 mA cm-2 , the lithium dendrites undergo self-heating. Carbon cloth as a host can quickly and uniformly transfer heat, which induces the uniform migration of Li on anodes. The semi-embedded structure with strong C─Bi ensures Bi nanospheres guide the formation of smooth morphology even under these harsh conditions (high-temperature, high-rate, etc.). Consequently, at 10 mA cm-2 /10 mAh cm-2 , the Li/Li3 Bi-NS-CC realizes ultra-long cycles of 1500 h and ultra-low overpotential of 15 mV in a symmetric cell.

15.
PNAS Nexus ; 3(1): pgad429, 2024 Jan.
Article En | MEDLINE | ID: mdl-38145248

The recent COVID-19 pandemic has made people acutely aware of the importance of indoor air quality (IAQ) and building ventilation systems, particularly in densely occupied places like offices and schools. As a result, governments and other public entities are increasingly investing in the installation, maintenance, and upgrades of ventilation systems in public buildings. However, little is known about the effect of building ventilation systems on actual IAQ and its impact on occupant behavior. This paper exploits exogenous closing and opening events of schools during the COVID-19 pandemic, combined with policy measures focusing on maximizing ventilation rates inside classrooms, to assess the effectiveness of building ventilation systems in primary schools. We use a unique sensor network implemented before the COVID-19 pandemic, consisting of measurement devices installed in 252 classrooms across 27 Dutch primary schools, continuously monitoring IAQ indicators such as CO2 levels and fine particle concentrations. Using high-frequency data from 2018 to 2022 school years, we compare the IAQ differences between natural and mechanical ventilation through a fixed-effect identification strategy. Our results show that mechanically ventilated classrooms perform better with respect to CO2 and fine particle levels. However, the post-COVID-19 ventilation measures implemented after school reopening had stronger effects on naturally ventilated (NV) classrooms, suggesting behavioral changes at the classroom level. We also investigate the longer term effects of these post-COVID-19 ventilation measures and show some evidence of decay in effectiveness, as well as a strong seasonal effect, particularly in NV classrooms, which seems the result of a trade-off between ventilation and thermal comfort.

16.
Materials (Basel) ; 16(20)2023 Oct 10.
Article En | MEDLINE | ID: mdl-37895603

Ruthenium (Ru) is a refractory metal that has applications in the semiconductor industry as a sputtering target material. However, conventional powder metallurgy methods cannot produce dense and fine-grained Ru targets with preferred orientation. Here, we present a novel method of hot-pressing deformation to fabricate Ru targets with high relative density (98.8%), small grain size (~4.4 µm) and strong (002) texture. We demonstrate that applying pressures of 30-40 MPa at 1400 °C transforms cylindrical Ru samples into disk-shaped targets with nearly full densification in the central region. We also show that the hardness and the (002)/(101) peak intensity ratio of the targets increase with the pressure, indicating enhanced mechanical and crystallographic properties. Our study reveals the mechanisms of densification and texture formation of Ru targets by hot-pressing deformation.

18.
ACS Appl Mater Interfaces ; 15(37): 43712-43723, 2023 Sep 20.
Article En | MEDLINE | ID: mdl-37691385

Because of the limitations of traditional chlorine-based bactericidal water treatment, such as the formation of disinfection byproducts (DBPs) and resistance to chlorine, novel approaches and materials are required for effective disinfection of water. This study focuses on the development of a new sterilization material, Ag/NH2-MIL-125(Ti), which was designed to effectively inactivate Escherichia coli in water. The effectiveness of the as-designed material stems from the synergistic interactions between Ag nanoparticles (NPs) and photoactive metal-organic frameworks (MOFs). In this complex material, the MOFs play a critical role in dispersing and isolating the Ag NPs, thus preventing undesirable aggregation during bacterial inactivation. Simultaneously, Ag NPs enhance the photocatalytic performance of the MOFs. Sterilization experiments demonstrate the remarkable rapid E. coli inactivation performance of Ag/NH2-MIL-125(Ti) under illuminated and nonilluminated conditions. Within 25 min of visible light exposure, the as-prepared material achieves a >7-log E. coli reduction. In addition, Ag/NH2-MIL-125(Ti) efficiently decomposes acetic acid, which is the main DBP precursor, under visible light irradiation. Mechanistic investigations revealed that •O2- and h+ were the primary active substances responsible for the inactivation of E. coli and the decomposition of acetic acid, respectively.


Metal Nanoparticles , Metal-Organic Frameworks , Chlorine , Escherichia coli , Silver/pharmacology , Titanium , Acetic Acid , Disinfection
19.
Anal Chem ; 95(41): 15146-15152, 2023 Oct 17.
Article En | MEDLINE | ID: mdl-37733965

The landscape of diagnostic assessments has experienced a paradigm shift driven by the advent of isothermal amplification techniques on point-of-care testing (POCT). The development of compact, portable isothermal amplification devices further emphasizes their transformative influence on diagnostic approaches. However, in prioritizing portability, these devices may exhibit limitations in functionality, rendering them less effective in addressing urgent public health emergencies during sudden pathogen outbreaks. In this paper, an efficient isothermal fluorescence amplification device has been fabricated for the rapid detection of pathogens during public health crises. The device features multichannel capability for simultaneous detection of various targets, integrates with the Internet of Medical Things (IoMT) for remote control and data uploading, and includes a deep learning-based batch processing system for rapid (9.4 ms) and accurate discrimination of pathogen type with excellent accuracy. The device has been successfully employed to simultaneously detect Staphylococcus aureus (SA) and methicillin-resistant Staphylococcus aureus (MRSA) with limits of detection (LODs) of 18 CFU/mL (SA) and 20 CFU/mL (MRSA) within 35 min by multiplex RPA assay and CRISPR/Cas12a-mediated nucleic acid detection assay.

20.
Int J Cardiol ; 391: 131286, 2023 11 15.
Article En | MEDLINE | ID: mdl-37619874

OBJECTIVE: Data on the evolution of congenital heart disease (CHD) in China remain scarce. Based on a Chinese echocardiography database, we analyzed the observed rate (OR) and spectrum changes of CHD over the past 18 years with a focus on the congenital aortic valve malformation (CAVM) and Adult CHD (ACHD). METHODS AND RESULTS: The transthoracic echocardiographic data of 682,565 records from 2003 to 2020 were retrospectively reviewed at Fujian Medical University Union Hospital, China. A total of 37,200 CHD cases were recruited in this study. Over the three periods (from 2003 to 2008, 2009-2014, to 2015-2020), the OR of Total CHD decreased (106.72, 90.64, and 67.43 per 1000 cases, respectively); the proportion of Simple CHD to Total CHD increased (80.96%, 83.41%, and 87.97%, respectively), with a decrease in the proportion of Complex CHD (18.11%, 15.51%, and 10.42%, respectively) (p < 0.05 for all). The proportion of ACHD increased in most types of CHD [Total CHD: 25.79%, 27.84%, and 31.43%; CAVM: 69.02%, 73.42%, and 78.16%; CAVM with aortic stenosis (AS): 67.42%, 70.73%, and 79.25%; respectively, p < 0.05 for all], with a much higher proportion in both CAVM and CAVM with AS than in the other CHD types. The proportion of CHD patients receiving intervention increased over the designated periods. CONCLUSIONS: This study depicts the longitudinal changes of CHD in the Chinese population with a single-center echocardiographic data, revealing an increased proportion of Simple CHD, ACHD (including CAVM and CAVM with AS), and a decreased OR of Total CHD and proportion of Complex CHD.


Aortic Valve Stenosis , Heart Defects, Congenital , Adult , Humans , Retrospective Studies , Heart Defects, Congenital/diagnostic imaging , Heart Defects, Congenital/epidemiology , Echocardiography/methods , China/epidemiology
...