Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Water Res ; 266: 122446, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39298901

RESUMEN

In advanced wastewater treatment plants on pig farms, meticulous design aims to eliminate intrinsic pollutants such as organic matter, heavy metals, and biological contaminants. In our field survey across Southern China, a notable disparity in wastewater treatment procedures among various farming facilities lies in the utilization of terminal chemical oxidation post-sedimentation tank. However, recent focus in wastewater surveillance has predominantly centered on antibiotic resistance genes, leaving the efficacy of virus removal in different effluent systems largely unexplored. To profile virus composition at the effluent, assess the virus elimination efficiency of chemical oxidation at the effluent end, and the potential environmental driver of virus abundance, we deployed a meta-transcriptomics approach to first determine the total virome in effluent specimens of terminal clean water tank system (CWT) and terminal chemical oxidation system (TCO) in Southern China pig farms, respectively. From these data, 172 viruses were identified, with a median reads per million (RPM) of 27,789 in CWT and 19,982 in TCO. Through the integration of analyses encompassing the co-occurrence patterns within viral communities, the ecology of viral diversity, and a comparative assessment of average variation degrees, we have empirically demonstrated that the procedure of TCO may perturb viral communities and diminish their abundance, particularly impacting RNA viral communities. However, despite the diminished abundance, pathogenic viruses such as PEDV and PRRSV persisted in the effluent following chemical deoxidation at a moderate RPM value, indicating a substantial in situ presence at effluent. Our environmental driver modeling, employing GLM and mantel tests, substantiated the intricate nature of virus community variation within the effluent, influenced heterogeneously by diverse factors. Notably, pond temperature emerged as the foremost determinant, while fishing farming exhibited a positive correlation with virus diversity (p < 0.05). This revelation of the cryptic persistence of virus communities in wastewater effluent expands our understanding of the varied responses of different virus categories to oxidation. Such insights transcend mere virus characterization, offering valuable implications for enhancing biosafety measures in farming practices and informing wastewater-based epidemiological surveillance.

2.
mSystems ; 9(9): e0063624, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39120143

RESUMEN

Cats (Felidae) have become an integral part of many households. However, our understanding of the full spectrum of pathogens affecting cats (referred to as the infectome) is limited, mainly due to the inadequacy of commonly used diagnostic tools in capturing the complete diversity of potential pathogens and the prevalence of pathogen co-infections. In this study, we employed a meta-transcriptomic approach to simultaneously characterize the infectome contributing to different disease syndromes and to investigate spatial, demographic, and ecological factors influencing pathogen diversity and community composition in a cohort of 27 hospitalized cats and seven stray cats. We identified 15 species of pathogens, with Candidatus Rickettsia tarasevichiae and Tritrichomonas foetus representing potential spillover risks. Importantly, although most cases of ascites hyperplasia were explained by coinfection with multiple pathogens, we identified the potential novel clinical outcomes of M. aubagnense infection among cats. We demonstrated that the increase in infectome diversity can be explained by a variety of predictors including age growth, temperature increase, and a higher proportion of females, with age growth presenting the strongest effect. Fine-scale analysis indicated that a higher diversity of infectomes were harbored in young cats rather than adult ones. Our results demonstrated that most feline diseases are better explained by the presence of virus-bacteria or virus-virus coinfection. This study serves as a timely endorsement for clinical diagnosis by vets to consider the cause of a disease based on a panel of cryptical co-infecting pathogens rather than on individual infectious agents. IMPORTANCE: Frequent studies reported the risks of cats as an intermediate host of zoonotic pathogens (e.g., SARS-CoV-2). Cats have a physically close interaction with their owners through activities like petting, kissing, and being licked on the cheek and hands. However, there are still limited studies that systematically investigate the infectome structure of cats. In this study, we employed a meta-transcriptomics approach to characterize 15 species of pathogens in cats, with Candidatus Rickettsia tarasevichiae first characterizing infection in diseased cats. Most feline diseases were better explained by the presence of virus-bacteria or virus-virus coinfection. The increase in infectome diversity could be influenced by a variety of predictors including age growth, temperature increase, and a higher proportion of females. A higher diversity of pathogens was harbored in young cats rather than adults. Importantly, we showed the value of linking the modern influx of meta-transcriptomics with comparative ecology and demography and of utilizing it to affirm that ecological and demographic variations impact the total infectome.


Asunto(s)
Ascitis , Enfermedades de los Gatos , Animales , Gatos , Enfermedades de los Gatos/microbiología , Enfermedades de los Gatos/virología , Enfermedades de los Gatos/epidemiología , Femenino , Masculino , Ascitis/veterinaria , Ascitis/virología , Ascitis/microbiología , Coinfección/veterinaria , Coinfección/microbiología , Coinfección/epidemiología , Coinfección/virología , Rickettsia/genética , Rickettsia/aislamiento & purificación , Rickettsia/patogenicidad , Mascotas/microbiología , Mascotas/virología
3.
Microbiol Spectr ; : e0036824, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162500

RESUMEN

Porcine reproductive and respiratory syndrome viruses (PRRSVs) exhibit high mutability and recombination, posing challenges to their immunization and control. This study isolated two new PRRSV strains, GD-7 and GX-3, from samples collected in Guangdong and Guangxi in 2023. Whole-genome sequencing, along with phylogenetic and recombination analyses, confirmed that GD-7 and GX-3 are natural novel recombinant strains of NADC30 PRRSV. Moreover, we established a pathogenicity model for piglets and sows based on the two isolates. The results of piglet pathogenicity revealed that both GD-7 and GX-3 caused clinical symptoms such as fever, loss of appetite, depression, and slow weight gain. Moreover, we observed that the mortality rate of GD-7-inoculated group piglets was 33.3%, which was similar to that of piglets infected with other highly pathogenic PRRSV strains and exceeded the mortality rate of most NADC30-like PRRSV. In pregnant sow models, the survival rate of sows in the GD-7 group was 75%, in contrast to the GX-3 group, where no sow mortality was observed, and both strains resulted in abortion, mummified fetuses, and stillbirths. These results highlight the elevated pathogenicity of these recombinant strains in sows, with GD-7 mainly causing sows to abort, and GX-3 mainly causing sows to give birth to mummified fetuses. This study introduces two distinct clinical recombinant PRRSV strains that differ from the prevalent strains in China. This research furthers our understanding of the epidemiology of PRRSV and underscores the significance of ongoing monitoring and research in the face of evolving virus strains. Moreover, these discoveries act as early warnings, underscoring the necessity for active control and immunization against PRRSV.IMPORTANCESince the discovery of NADC30-like PRRSV in China in 2013, it has gradually become the dominant strain of PRRSV in China. NADC30-like PRRSV exhibits high recombination characteristics, constantly recombining with different strains, leading to the emergence of numerous novel strains. Of particular importance is the observation that NADC30-like PRRSV with different recombination patterns exhibits varying pathogenicity, which has a significant impact on the pig farming industry. This emphasizes the necessity of monitoring and responding to evolving PRRSV strains to develop effective immunization and control strategies. In this paper, we conducted pathogenicity studies on the isolated NADC30-like PRRSV and analyzed the differences in the genomes and pathogenicity of the different strains by recording clinical symptoms, temperature changes, detoxification tests, and changes in viremia and histopathology in infected pigs. This was done to provide a theoretical basis for the epidemiological situation and epidemic prevention and control of PRRSV.

4.
Vet Res ; 55(1): 9, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225617

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) is a viral pathogen with substantial economic implications for the global swine industry. The existing vaccination strategies and antiviral drugs offer limited protection. Replication of the viral RNA genome encompasses a complex series of steps, wherein a replication complex is assembled from various components derived from both viral and cellular sources, as well as from the viral genomic RNA template. In this study, we found that ZNF283, a Krüppel-associated box (KRAB) containing zinc finger protein, was upregulated in PRRSV-infected Marc-145 cells and porcine alveolar macrophages and that ZNF283 inhibited PRRSV replication and RNA synthesis. We also found that ZNF283 interacts with the viral proteins Nsp9, an RNA-dependent RNA polymerase, and Nsp10, a helicase. The main regions involved in the interaction between ZNF283 and Nsp9 were determined to be the KRAB domain of ZNF283 and amino acids 178-449 of Nsp9. The KRAB domain of ZNF283 plays a role in facilitating Nsp10 binding. In addition, ZNF283 may have an affinity for the 3' untranslated region of PRRSV. These findings suggest that ZNF283 is an antiviral factor that inhibits PRRSV infection and extend our understanding of the interactions between KRAB-containing zinc finger proteins and viruses.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Enfermedades de los Porcinos , Animales , Porcinos , Virus del Síndrome Respiratorio y Reproductivo Porcino/metabolismo , Unión Proteica , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , ARN Viral/metabolismo , Dedos de Zinc , Replicación Viral
5.
Vet Microbiol ; 290: 109988, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38244395

RESUMEN

African swine fever virus (ASFV) has caused enormous economic losses since its first reported detection, and there is still no effective vaccines or drug treatment. During infection, viruses may employ various strategies, such as regulating the host endoplasmic reticulum stress/unfolded protein response or the formation of stress granules (SGs), to form an optimal environment for virus replication. However, how ASFV infection regulates host endoplasmic reticulum stress, eIF2α-regulated protein synthesis, and the formation of SGs remains unclear. Here, we evaluated the activation of ER stress and its three downstream axes during ASFV infection and identified a powerful dephosphorylation of eIF2α by ASFV ex vivo. This strong dephosphorylation property could maintain the efficiency of eIF2α-mediated de novo global protein synthesis, thus ensuring efficient viral protein synthesis at early stage. In addition, the powerful dephosphorylation of eIF2α by ASFV upon infection could also inhibit the formation of SGs induced by sodium arsenite. In addition, a specific eIF2α dephosphorylation inhibitor, salubrinal, could partially counteract ASFV-mediated eIF2α dephosphorylation and inhibit viral replication. Our results provide new insights into the areas of ASFV`s escape from host immunity and hijacking of the host protein translation system.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Enfermedades de los Porcinos , Animales , Porcinos , Virus de la Fiebre Porcina Africana/genética , Gránulos de Estrés , Replicación Viral , Biosíntesis de Proteínas
6.
Vet Microbiol ; 290: 110002, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38295489

RESUMEN

African swine fever has caused substantial economic losses to China`s pig industry in recent years. Currently, the highly pathogenic African swine fever virus strain of genotype II is predominantly circulating in China, accompanied by a series of emerging isolates displaying unique genetic variations. The pathogenicity of these emerging strains is still unclear. Recently, a novel ASFV strain with a distinguishable three-large-fragment gene deletion was obtained from the field specimens, and its in vivo pathogenicity and transmission were evaluated in this study. The animal experiment involved inoculating a high dose of YNFN202103 and comparing its effects with those of the highly pathogenic strain GZ201801_2. Results showed that pigs infected by YNFN202103 exhibited significantly prolonged onset and survival time, lower viremia levels, and less severe histopathological lesions compared to GZ201801_2. These findings contributed valuable insights into the pathogenicity and transmission of ASFV and its prevention and eradication strategies in practical settings.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Enfermedades de los Porcinos , Porcinos , Animales , Virus de la Fiebre Porcina Africana/genética , Virulencia/genética , Eliminación de Gen , China , Enfermedades de los Porcinos/genética
7.
Virus Evol ; 9(2): vead060, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37868933

RESUMEN

Since 2018, the outbreaks of genotype II African swine fever virus (ASFV) in China and several eastern Asian countries have caused a huge impact on the local swine industry, resulting in huge economic losses. However, little is known about the origin, genomic diversity, evolutionary features, and epidemiological history of the genotype II ASFV. Here, 14 high-quality complete genomes of ASFVs were generated via sequencing of samples collected from China over the course of 3 years, followed by phylogenetic and phylodynamic analyses. The strains identified were relatively homogeneous, with a total of 52 SNPs and 11 indels compared with the prototype strain HLJ/2018, among which there were four exceptionally large deletions (620-18,023 nt). Evolutionary analyses revealed that ASFV strains distributed in eastern Asia formed a monophyly and a 'star-like' structure centered around the prototype strain, suggesting a single origin. Additionally, phylogenetic network analysis and ancestral reconstruction of geographic state indicated that genotype II ASFV strains in eastern Asia likely originated from Western Europe. Overall, these results contribute to the understanding of the history and current status of genotype II ASFV strains in eastern Asian, which could be of considerable importance in disease control and prevention.

8.
Front Microbiol ; 14: 1273589, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37904874

RESUMEN

Porcine epidemic diarrhea (PED) is an enterophilic infectious disease caused by the porcine epidemic diarrhea virus (PEDV), which can lead to dehydration-like diarrhea in piglets with a mortality rate of up to 100%, causing huge economic losses to the global pig industry. In this study, we isolated two PEDV strains, FS202201 and JY202201, from diarrheal samples collected from two new PED outbreak farms in 2022. We performed phylogenetic analysis of the S gene and whole gene sequence. The effects of the different mutations on viral pathogenicity were investigated using piglet challenge experiments. The results showed that both strains belong to the G2c subtype, a widely prevalent virulent strain. Compared with FS202201, JY202201 harbored substitution and deletion mutations in nsp1. Both FS202201 and JY202201 infected piglets showed severe diarrhea and significant intestinal tissue lesions at an infection dose of 104 TCID50/mL, with a mortality rate of 50%; however, JY202201 required an additional day to reach mortality stabilization. An infection dose of 103 TCID50/mL reduced diarrhea and intestinal tissue lesions in piglets, with mortality rates of the two strains at 16.7% and 0%, respectively. In addition, PEDV was detected in the heart, liver, spleen, lungs, kidneys, mesenteric lymph nodes, stomach, large intestine, duodenum, jejunum, and ileum, with the highest levels in the intestinal tissues. In conclusion, this study enriches the epidemiology of PEDV and provides a theoretical basis for the study of its pathogenic mechanism and prevention through virus isolation, identification, and pathogenicity research on newly identified PED in the main transmission hub area of PEDV in China (Guangdong).

9.
Virol J ; 20(1): 242, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875895

RESUMEN

BACKGROUND: African swine fever virus (ASFV) is one of the most fatal swine etiological agents and has a huge economic impact on the global pork industry. Given that no effective vaccines or anti-ASFV drugs are available, there remains a pressing need for novel anti-ASFV drugs. This study aimed to investigate the anti-African swine fever virus (ASFV) activity of brequinar, a DHODH inhibitor. METHODS: The anti-ASFV activity of brequinar was investigated using IFA, HAD, HAD50, qRT-PCR, and western blotting assays. The western blotting assay was used to investigate whether brequinar inhibits ASFV replication by killing ASFV particles directly or by acting on cell factors. The confocal microscopy and western blotting assays were used to investigate whether brequinar inhibits ASFV replication by activating ferroptosis. RESULTS: In this study, brequinar was found to effectively inhibit ASFV replication ex vivo in porcine alveolar macrophages (PAMs) in a dose-dependent manner. In kinetic studies, brequinar was found to maintain ASFV inhibition from 24 to 72 hpi. Mechanistically, the time-of-addition assay showed that brequinar exerted anti-ASFV activity in all treatment modes, including pre-, co-, and post-treatment rather than directly killing ASFV particles. Notably, FerroOrange, Mito-FerroGreen, and Liperfluo staining experiments showed that brequinar increased the accumulation of intracellular iron, mitochondrial iron, and lipid peroxides, respectively. Furthermore, we also found that ferroptosis agonist cisplatin treatment inhibited ASFV replication in a dose-dependent manner and the inhibitory effect of brequinar on ASFV was partially reversed by the ferroptosis inhibitor ferrostatin-1, suggesting that brequinar activates ferroptosis to inhibit ASFV replication. Interestingly, exogenous uridine supplementation attenuated the anti-ASFV activity of brequinar, indicating that brequinar inhibits ASFV replication by inhibiting DHODH activity and the depletion of intracellular pyrimidine pools; however, the induction of ferroptosis by brequinar treatment was not reversed by exogenous uridine supplementation, suggesting that brequinar activation of ferroptosis is not related to the metabolic function of pyrimidines. CONCLUSIONS: Our data confirm that brequinar displays potent antiviral activity against ASFV in vitro and reveal the mechanism by which brequinar inhibits ASFV replication by activating ferroptosis, independent of inhibiting pyrimidine synthesis, providing novel targets for the development of anti-ASFV drugs.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Ferroptosis , Porcinos , Animales , Replicación Viral , Dihidroorotato Deshidrogenasa , Cinética , Uridina/metabolismo , Hierro/metabolismo
10.
Vet Res ; 54(1): 58, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37438783

RESUMEN

African swine fever (ASF), caused by ASF virus (ASFV) infection, poses a huge threat to the pork industry owing to ineffective preventive and control measures. Hence, there is an urgent need to develop strategies, including antiviral drugs targeting ASFV, for preventing ASFV spread. This study aimed to identify novel compounds with anti-ASFV activity. To this end, we screened a small chemical library of 102 compounds, among which the natural flavonoid dihydromyricetin (DHM) exhibited the most potent anti-ASFV activity. DHM treatment inhibited ASFV replication in a dose- and time-dependent manner. Furthermore, it inhibited porcine reproductive and respiratory syndrome virus and swine influenza virus replication, which suggested that DHM exerts broad-spectrum antiviral effects. Mechanistically, DHM treatment inhibited ASFV replication in various ways in the time-to-addition assay, including pre-, co-, and post-treatment. Moreover, DHM treatment reduced the levels of ASFV-induced inflammatory mediators by regulating the TLR4/MyD88/MAPK/NF-κB signaling pathway. Meanwhile, DHM treatment reduced the ASFV-induced accumulation of reactive oxygen species, further minimizing pyroptosis by inhibiting the ASFV-induced NLRP3 inflammasome activation. Interestingly, the effects of DHM on ASFV were partly reversed by treatment with polyphyllin VI (a pyroptosis agonist) and RS 09 TFA (a TLR4 agonist), suggesting that DHM inhibits pyroptosis by regulating TLR4 signaling. Furthermore, targeting TLR4 with resatorvid (a specific inhibitor of TLR4) and small interfering RNA against TLR4 impaired ASFV replication. Taken together, these results reveal the anti-ASFV activity of DHM and the underlying mechanism of action, providing a potential compound for developing antiviral drugs targeting ASFV.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Enfermedades de los Porcinos , Animales , Porcinos , Receptor Toll-Like 4 , Piroptosis , Antivirales/farmacología
11.
Front Vet Sci ; 10: 1207189, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37483283

RESUMEN

Since it was first reported in 1987, porcine reproductive and respiratory syndrome virus (PRRSV) has caused several economic crises worldwide. The current prevalence of PRRSV NADC30-like stains causing clinical disease outbreaks in Chain is highly concerning. Immunization against and the prevention of this infection are burdensome for farming organizations as the pathogen frequently mutates and undergoes recombination. Herein, the genetic characterization of a NADC30-like strain (termed BL2019) isolated from a farm in Guangdong Province, China, was analyzed and its pathogenicity for piglets and sows was assessed. Results revealed that BL2019 exhibits a nucleotide homology of 93.7% with NADC30 PRRSV and its NSP2 coding region demonstrates the same 131aa deletion pattern as that of NADC30 and NADC30-like. Furthermore, we identified two recombination breakpoints located nt5804 of the NSP5-coding region and nt6478 of NSP2-coding region, the gene fragment between the two breakpoints showed higher homology to the TJ strain(a representative strain of highly pathogenic PRRSV) compared to the NADC30 strain. In addition, BL2019 infection in piglets caused fever lasting for 1 week, moderate respiratory clinical signs and obvious visual and microscopic lung lesions; infection in gestating sows affected their feed intake and increased body temperature, abortion rates, number of weak fetuses, and other undesirable phenomena. Therefore, we report a NADC30-like PRRSV strain with partial recombination and a representative strain of HP-PRRSV, strain TJ, that can provide early warning and support for PRRS immune prevention and control.

12.
Virus Res ; 334: 199159, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37385349

RESUMEN

African swine fever virus (ASFV) is the etiological agent of African swine fever (ASF), which is one of the most harmful swine diseases in the pig industry because of its nearly 100% mortality rate in domestic pigs and results in incalculable economic loss. Ever since ASF was initially reported, scientists have worked to develop anti-ASF vaccines; however, currently no clinically effective vaccine for ASF is available. Therefore, the development of novel measures to prevent ASFV infection and transmission is essential. In this study, we aimed to investigate the anti-ASF activity of theaflavin (TF), a natural compound mainly isolated from black tea. We found that TF potently inhibited ASFV replication at non-cytotoxic concentrations ex vivo in primary porcine alveolar macrophages (PAMs). Mechanistically, we found that TF inhibited ASFV replication by acting on cells rather than interacting directly with ASFV to inhibit viral replication. Further, we found that TF upregulated the AMPK (5'-AMP-activated protein kinase) signaling pathway in ASFV-infected and uninfected cells, and treatment with the AMPK agonist MK8722 upregulated the AMPK signaling pathway and inhibited ASFV proliferation in a dose-dependent manner. Notably, the effects of TF on AMPK activation and ASFV inhibition were partially reversed by the AMPK inhibitor dorsomorphin. In addition, we found that TF down-regulated the expression of genes related to lipid synthesis and decreased the intracellular accumulation of total cholesterol and total triglycerides in ASFV-infected cells, suggesting that TF may inhibit ASFV replication by disrupting lipid metabolism. In summary, our results demonstrated that TF is an ASFV infection inhibitor and revealed the mechanism by which ASFV replication is inhibited, providing a novel mechanism and potential lead compound for the development of anti-ASFV drugs.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Porcinos , Animales , Virus de la Fiebre Porcina Africana/fisiología , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/farmacología , Metabolismo de los Lípidos , Sus scrofa , Replicación Viral , Transducción de Señal
13.
Vet Microbiol ; 284: 109794, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37295229

RESUMEN

Africa swine fever (ASF) is a highly pathogenic contagion caused by African swine fever virus (ASFV), which not only affects the development of domestic pig industry, but also causes huge losses to the world agricultural economy. Vaccine development targeting ASFV remains elusive, which leads to severe difficulties in disease prevention and control. Emodin (EM) and rhapontigenin (RHAG), which are extracted from the dried rhizome of Polygonum knotweed, have various biological properties such as anti-neoplastic and anti-bacterial activities, but no studies have reported that they have anti-ASFV effects. This study discovered that EM and RHAG at different concentrations had a significant dose-dependent inhibitory effect on the ASFV GZ201801 strain in porcine alveolar macrophages (PAMs), and at the specified concentration, EM and RHAG showed continuous inhibition at 24 h, 48 h and 72 h. Not only did they strongly impact virion attachment and internalization, but also inhibit the early stages of ASFV replication. Further research proved that the expression level of Rab 7 protein was reduced by EM and RHAG, and treatments with EM and RHAG induced the accumulation of free cholesterol in endosomes and inhibited endosomal acidification, which prevented the virus from escaping and shelling from late endosomes. This study summarized the application of EM and RHAG in inhibiting ASFV replication in-vitro. Similarly, EM and RHAG targeted Rab 7 in the viral endocytosis pathway, inhibited viral infection, and induced the accumulation of cholesterol in the endosomes and the acidification of the endosomes to inhibit uncoating. A reference could be made to the results of this study when developing antiviral drugs and vaccines.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Emodina , Enfermedades de los Porcinos , Porcinos , Animales , Virus de la Fiebre Porcina Africana/fisiología , Internalización del Virus , Emodina/metabolismo , Emodina/farmacología , Sus scrofa , Colesterol/metabolismo , Replicación Viral
14.
Virus Res ; 333: 199139, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37217033

RESUMEN

Porcine reproductive and respiratory syndrome (PRRS) is a severe respiratory disease caused by porcine reproductive and respiratory syndrome virus (PRRSV) that can lead to the abortion of pregnant sows and decreased boar semen quality. However, the mechanisms of PRRSV replication in the host have not yet been fully elucidated. As lipid metabolism and lipid droplets (LDs) have been reported to play important roles in the replication of various viruses, we aimed to explore the mechanisms through which LDs affect PRRSV replication. Laser confocal and transmission electron microscopy revealed that PRRSV infection promoted intracellular LD accumulation, which was significantly reduced by treatment with the NF-κB signaling pathway inhibitors BAY11-7082 and metformin hydrochloride (MH). In addition, treatment with a DGAT1 inhibitor significantly reduced the protein expression of Phosphorylated NF-ΚB P65and PIκB and the transcription of IL-1ß and IL-8 in the NF-κB signaling pathway. Furthermore, we showed that the reduction of the NF-κB signaling pathway and LDs significantly reduced PRRSV replication. Together, the findings of this study suggest a novel mechanism through which PRRSV regulates the NF-κB signaling pathway to increase LD accumulation and promote viral replication. Moreover, we demonstrated that both BAY11-7082 and MH can reduce PRRSV replication by reducing the NF-κB signaling pathway and LD accumulation. This study lays a theoretical foundation for research on the mechanism of PRRS prevention and control, as well as the research and development of antiviral drugs.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Porcinos , Animales , Masculino , Femenino , Virus del Síndrome Respiratorio y Reproductivo Porcino/metabolismo , FN-kappa B/metabolismo , Gotas Lipídicas/metabolismo , Análisis de Semen , Línea Celular , Replicación Viral , Lípidos
15.
Vet Microbiol ; 281: 109741, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37087878

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) is an RNA virus belonging to the Arteriviridae family. Currently, the strain has undergone numerous mutations, bringing massive losses to the swine industry worldwide. Despite several studies had been conducted on PRRSV, the molecular mechanisms by which it causes infection remain unclear. Proliferating cell nuclear antigen (PCNA) is a sign of DNA damage and it participates in DNA replication and repair. Therefore, in this study, we investigated the potential role of PCNA in PRRSV infection. We observed that PCNA expression was stable after PRRSV infection in vitro; however, PCNA was translocated from the nucleus to the cytoplasm. Notably, we found the redistribution of PCNA from the nucleus to the cytoplasm in cells transfected with the N protein. PCNA silencing inhibited PRRSV replication and the synthesis of PRRSV shorter subgenomic RNA (sgmRNA) and genomic RNA (gRNA), while PCNA overexpression promoted virus replication and PRRSV shorter sgmRNA and gRNA synthesis. By performing immunoprecipitation and immunofluorescence colocalization, we confirmed that PCNA interacted with replication-related proteins, namely NSP9, NSP12, and N, but not with NSP10 and NSP11. Domain III of the N protein (41-72 aa) interacted with the IDCL domain of PCNA (118-135 aa). Therefore, we propose cytoplasmic transport of PCNA and its subsequent influence on PRRSV RNA synthesis could be a viral strategy for manipulating cell function, thus PCNA is a potential target to prevent and control PRRSV infection.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Enfermedades de los Porcinos , Animales , Genoma Viral , Síndrome Respiratorio y de la Reproducción Porcina/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , ARN , Porcinos , Enfermedades de los Porcinos/genética , Proteínas no Estructurales Virales/genética , Replicación Viral/genética , ARN Subgenómico/genética
16.
J Virol ; 97(4): e0026423, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36943051

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) causes respiratory disease in pigs of all ages and reproductive failure in sows, resulting in great economic losses to the swine industry. In this work, we identified the interaction between PSMB4 and PRRSV Nsp1α by yeast two-hybrid screening. The PSMB4-Nsp1α interaction was further confirmed by coimmunoprecipitation, glutathione S-transferase (GST) pulldown, and laser confocal experiments. The PCPα domain (amino acids 66 to 166) of Nsp1α and the C-terminal domain (amino acids 250 to 264) of PSMB4 were shown to be critical for the PSMB4-Nsp1α interaction. PSMB4 overexpression reduced PRRSV replication, whereas PSMB4 knockdown elicited opposing effects. Mechanistically, PSMB4 targeted K169 in Nsp1α for K63-linked ubiquitination and targeted Nsp1α for autolysosomal degradation by interacting with LC3 to enhance the activation of the lysosomal pathway. Meanwhile, we found that PSMB4 activated the NF-κB signaling pathway to produce type I interferons by downregulating the expression of IκBα and p-IκBα. In conclusion, our data revealed a new mechanism of PSMB4-mediated restriction of PRRSV replication, whereby PSMB4 was found to induce Nsp1α degradation and type I interferon expression, in order to impede the replication of PRRSV. IMPORTANCE In the swine industry, PRRSV is a continuous threat, and the current vaccines are not effective enough to block it. This study determined that PSMB4 plays an antiviral role against PRRSV. PSMB4 was found to interact with PRRSV Nsp1α, mediate K63-linked ubiquitination of Nsp1α at K169, and thus trigger its degradation via the lysosomal pathway. Additionally, PSMB4 activated the NF-κB signaling pathway to produce type I interferons by downregulating the expression of IκBα and p-IκBα. This study extends our understanding of the proteasome subunit PSMB4 against PRRSV replication and will contribute to the development of new antiviral strategies.


Asunto(s)
Interferón Tipo I , Virus del Síndrome Respiratorio y Reproductivo Porcino , Complejo de la Endopetidasa Proteasomal , Proteínas no Estructurales Virales , Expresión Génica/inmunología , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Interferón beta/genética , Lisosomas/metabolismo , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/inmunología , Dominios Proteicos , Proteolisis , Porcinos , Ubiquitinación , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/genética , Animales
17.
Front Microbiol ; 13: 980862, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246286

RESUMEN

Senecavirus A (SVA) is a member of the genus Senecavirus in the family Picornaviridae that infects pigs and shows symptoms similar to foot and mouth diseases and other vesicular diseases. It is difficult to prevent, thus, causing tremendous economic loss to the pig industry. However, the global transmission routes of SVA and its natural origins remain unclear. In this study, we processed representative SVA sequences from the GenBank database along with 10 newly isolated SVA strains from the field samples collected from our lab to explore the origins, population characteristics, and transmission patterns of SVA. The SVA strains were firstly systematically divided into eight clades including Clade I-VII and Clade Ancestor based on the maximum likelihood phylogenetic inference. Phylogeographic and phylodynamics analysis within the Bayesian statistical framework revealed that SVA originated in the United States in the 1980s and afterward spread to different countries and regions. Our analysis of viral transmission routes also revealed its historical spread from the United States and the risk of the global virus prevalence. Overall, our study provided a comprehensive assessment of the phylogenetic characteristics, origins, history, and geographical evolution of SVA on a global scale, unlocking insights into developing efficient disease management strategies.

18.
Front Vet Sci ; 9: 978243, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36061106

RESUMEN

African swine fever (ASF) outbreak have caused tremendous economic loss to the pig industry in China since its emergence in August 2018. Previous studies revealed that many published sequences are not suitable for detailed analyses due to the lack of data regarding quality parameters and methodology, and outdated annotations. Thus, high-quality genomes of highly pathogenic strains that can be used as references for early Chinese ASF outbreaks are still lacking, and little is known about the features of intra-host variants of ASF virus (ASFV). In this study, a full genome sequencing of clinical samples from the first ASF outbreak in Guangdong in 2018 was performed using MGI (MGI Tech Co., Ltd., Shenzhen, China) and Nanopore sequencing platforms, followed by Sanger sequencing to verify the variations. With 22 sequencing corrections, we obtained a high-quality genome of one of the earliest virulent isolates, GZ201801_2. After proofreading, we improved (add or modify) the annotations of this isolate using the whole genome alignment with Georgia 2007/1. Based on the complete genome sequence, we constructed the methylation profiles of early ASFV strains in China and predicted the potential 5mC and 6mA methylation sites, which are likely involved in metabolism, transcription, and replication. Additionally, the intra-host single nucleotide variant distribution and mutant allele frequency in the clinical samples of early strain were determined for the first time and found a strong preference for A and T substitution mutation, non-synonymous mutations, and mutations that resulted in amino acid substitutions into Lysine. In conclusion, this study provides a high-quality genome sequence, updated genome annotation, methylation profile, and mutation spectrum of early ASFV strains in China, thereby providing a reference basis for further studies on the evolution, transmission, and virulence of ASFV.

19.
Microbiol Spectr ; 10(5): e0215522, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36000903

RESUMEN

We reported a novel African swine fever virus (ASFV) strain that had a three-large-fragment deletion and unique variations in genome. This isolate displayed a nonhemadsorbing phenotype and had homogeneous proliferation compared with the wild-type ASFV strain. Our findings highlighted the urgent need for further investigation of ASFV variations in China. IMPORTANCE African swine fever virus (ASFV) has been circulating in China for 5 years, and low virulent strains with changes in the genome have been reported. Nevertheless, there is still a lack of knowledge about the epidemic strains at the whole-genome level. This study reported a novel strain and further analyzed its genomic and biological characteristics. In addition, our study also suggests that whole-genome sequencing plays a key role in the epidemiology investigation of ASFV variations.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Porcinos , Animales , Virus de la Fiebre Porcina Africana/genética , Fiebre Porcina Africana/epidemiología , Proteínas Virales/genética , Virulencia , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA