Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Mol Cancer ; 23(1): 179, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215345

RESUMEN

Plenty of circRNAs have been reported to play an important role in colorectal cancer (CRC), while the reason of abnormal circRNA expression in cancer still keep elusive. Here, we found that m7G RNA modifications were enriched in some circRNAs, these m7G modifications in circRNAs were catalyzed by METTL1, and the GG motif was the main site preference for m7G modifications in circRNAs. We further confirmed that METTL1 played a cancer-promoting role in CRC. We then screened a highly expressed circRNA, called circKDM1A, and found that METTL1 prevented the degradation of circKDM1A by m7G modification. CircKDM1A was further verified to promote proliferation, invasion and migration of CRC in vivo and in vitro. Its cancer-promoting ability was weakened after the m7G site mutation. CircKDM1A was verified to activate AKT pathway by upregulating PDK1, consequently promoting CRC progression. These results suggest that m7G-modified circRNA promotes CRC progression via activating AKT pathway. Our study uncovers an essential physiological function and mechanism of METTL1-mediated m7G modification in the regulation of circRNA stability and cancer progression.


Asunto(s)
Proliferación Celular , Neoplasias Colorrectales , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Metiltransferasas , ARN Circular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Humanos , ARN Circular/genética , Metiltransferasas/metabolismo , Metiltransferasas/genética , Animales , Ratones , Línea Celular Tumoral , Movimiento Celular , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Ratones Desnudos
2.
J Immunother Cancer ; 12(5)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782541

RESUMEN

BACKGROUND: Accumulating evidence demonstrates that an increased tumor-associated macrophage abundance is often associated with poor prognosis in colorectal cancer (CRC). The mechanism underlying the effect of tumor-derived exosomes on M2 macrophage polarization remains elusive. RESULTS: The novel circular RNA circPOLQ exhibited significantly higher expression in CRC tissues than in paired normal tissues. Higher circPOLQ expression was associated with poorer prognosis in patients with CRC. In vitro and in vivo experiments showed that tumor-derived exosomal circPOLQ did not directly regulate CRC cell development but promoted CRC metastatic nodule formation by enhancing M2 macrophage polarization. circPOLQ activated the interleukin-10/signal transducer and activator of transcription 3 axis by targeting miR-379-3 p to promote M2 macrophage polarization. CONCLUSION: circPOLQ can enter macrophages via CRC cell-derived exosomes and promote CRC metastatic nodule formation by enhancing M2 macrophage polarization. These findings reveal a tumor-derived exosome-mediated tumor-macrophage interaction potentially affecting CRC metastatic nodule formation.


Asunto(s)
Neoplasias Colorrectales , Exosomas , Interleucina-10 , Macrófagos , ARN Circular , Factor de Transcripción STAT3 , Animales , Femenino , Humanos , Masculino , Ratones , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Exosomas/metabolismo , Interleucina-10/metabolismo , Activación de Macrófagos , Macrófagos/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Transducción de Señal , Factor de Transcripción STAT3/metabolismo , Macrófagos Asociados a Tumores/metabolismo
3.
J Exp Clin Cancer Res ; 43(1): 119, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38641828

RESUMEN

BACKGROUND: Refractoriness to surgical resection and chemotherapy makes intrahepatic cholangiocarcinoma (ICC) a fatal cancer of the digestive system with high mortality and poor prognosis. Important function invests circRNAs with tremendous potential in biomarkers and therapeutic targets. Nevertheless, it is still unknown how circRNAs contribute to the evolution of ICC. METHODS: CircRNAs in paired ICC and adjacent tissues were screened by circRNAs sequencing. To explore the impact of circRNAs on ICC development, experiments involving gain and loss of function were conducted. Various experimental techniques, including quantitative real-time PCR (qPCR), western blotting, RNA immunoprecipitation (RIP), luciferase reporter assays, RNA pull-down, chromatin immunoprecipitation (ChIP), ubiquitination assays and so on were employed to identify the molecular regulatory role of circRNAs. RESULTS: Herein, we reported a new circRNA, which originates from exon 9 to exon 15 of the SLCO1B3 gene (named circSLCO1B3), orchestrated ICC progression by promoting tumor proliferation, metastasis and immune evasion. We found that the circSLCO1B3 gene was highly overexpressed in ICC tissues and related to lymphatic metastasis, tumor sizes, and tumor differentiation. Mechanically, circSLCO1B3 not only promoted ICC proliferation and metastasis via miR-502-5p/HOXC8/SMAD3 axis, but also eradicated anti-tumor immunity via suppressing ubiquitin-proteasome-dependent degradation of PD-L1 by E3 ubiquitin ligase SPOP. We further found that methyltransferase like 3 (METTL3) mediated the m6A methylation of circSLCO1B3 and stabilizes its expression. Our findings indicate that circSLCO1B3 is a potential prognostic marker and therapeutic target in ICC patients. CONCLUSIONS: Taken together, m6A-modified circSLCO1B3 was correlated with poor prognosis in ICC and promoted ICC progression not only by enhancing proliferation and metastasis via potentiating HOXC8 expression, but also by inducing immune evasion via antagonizing PD-L1 degradation. These results suggest that circSLCO1B3 is a potential prognostic marker and therapeutic target for ICC.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Metiltransferasas , ARN Circular , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Línea Celular Tumoral , Proliferación Celular/genética , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas Nucleares/metabolismo , Pronóstico , Proteínas Represoras/metabolismo , ARN/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos/genética
4.
Cell Death Dis ; 15(2): 106, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302430

RESUMEN

Although immunotherapy has made breakthrough progress, its efficacy in solid tumours remains unsatisfactory. Exosomes are the main type of extracellular vesicles that can deliver various intracellular molecules to adjacent or distant cells and organs, mediating various biological functions. Studies have found that exosomes can both activate the immune system and inhibit the immune system. The antigen and major histocompatibility complex (MHC) carried in exosomes make it possible to develop them as anticancer vaccines. Exosomes derived from blood, urine, saliva and cerebrospinal fluid can be used as ideal biomarkers in cancer diagnosis and prognosis. In recent years, exosome-based therapy has made great progress in the fields of drug transportation and immunotherapy. Here, we review the composition and sources of exosomes in the solid cancer immune microenvironment and further elaborate on the potential mechanisms and pathways by which exosomes influence immunotherapy for solid cancers. Moreover, we summarize the potential clinical application prospects of engineered exosomes and exosome vaccines in immunotherapy for solid cancers. Eventually, these findings may open up avenues for determining the potential of exosomes for diagnosis, treatment, and prognosis in solid cancer immunotherapy.


Asunto(s)
Exosomas , Vesículas Extracelulares , Neoplasias , Vacunas , Humanos , Exosomas/metabolismo , Neoplasias/patología , Vesículas Extracelulares/metabolismo , Inmunoterapia , Vacunas/metabolismo , Vacunas/uso terapéutico , Microambiente Tumoral
5.
iScience ; 27(2): 108779, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38292420

RESUMEN

Immune escape is identified as one of the reasons for the poor prognosis of colorectal cancer (CRC) patients. Circular RNAs are considered to promote tumor progression by mediating tumor immune escape. We discovered that higher expression of circYAP1 was associated with a worse prognosis of CRC patients. Functional experiments in vitro and in vivo showed that circYAP1 upregulation inhibited the cytotoxicity of CD8+ T cells by upregulating programmed death ligand-1 (PD-L1). Mechanistically, we found that circYAP1 directly binds to the YAP1 protein to prevent its phosphorylation, enhancing proportion of YAP1 protein in the nucleus, and that YAP1 interacts with TCF4 to target the PD-L1 promoter and initiate PD-L1 transcription in CRC cells. Taken together, circYAP1 promotes CRC immune escape and tumor progression by activating the YAP1/TCF4-PD-L1 axis and may provide a new strategy for combination immunotherapy of CRC patients.

6.
Cell Death Discov ; 10(1): 40, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245520

RESUMEN

As the latest and most anticipated method of tumor immunotherapy, CAR-NK therapy has received increasing attention in recent years, and its safety and high efficiency have irreplaceable advantages over CAR-T. Current research focuses on the application of CAR-NK in hematological tumors, while there are fewer studies on solid tumor. This article reviews the process of constructing CAR-NK, the effects of hypoxia and metabolic factors, NK cell surface receptors, cytokines, and exosomes on the efficacy of CAR-NK in solid tumor, and the role of CAR-NK in various solid tumor. The mechanism of action and the research status of the potential of CAR-NK in the treatment of solid tumor in clinical practice, and put forward the advantages, limitations and future problems of CAR-NK in the treatment of solid tumor.

7.
Mol Cancer ; 22(1): 203, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38087360

RESUMEN

Tumor immunotherapy has transformed neoplastic disease management, yet low response rates and immune complications persist as major challenges. Extracellular vesicles including exosomes have emerged as therapeutic agents actively involved in a diverse range of pathological conditions. Mounting evidence suggests that alterations in the quantity and composition of extracellular vesicles (EVs) contribute to the remodeling of the immune-suppressive tumor microenvironment (TME), thereby influencing the efficacy of immunotherapy. This revelation has sparked clinical interest in utilizing EVs for immune sensitization. In this perspective article, we present a comprehensive overview of the origins, generation, and interplay among various components of EVs within the TME. Furthermore, we discuss the pivotal role of EVs in reshaping the TME during tumorigenesis and their specific cargo, such as PD-1 and non-coding RNA, which influence the phenotypes of critical immune cells within the TME. Additionally, we summarize the applications of EVs in different anti-tumor therapies, the latest advancements in engineering EVs for cancer immunotherapy, and the challenges encountered in clinical translation. In light of these findings, we advocate for a broader understanding of the impact of EVs on the TME, as this will unveil overlooked therapeutic vulnerabilities and potentially enhance the efficacy of existing cancer immunotherapies.


Asunto(s)
Exosomas , Vesículas Extracelulares , Neoplasias , Humanos , Neoplasias/patología , Vesículas Extracelulares/genética , Exosomas/patología , Comunicación Celular , Inmunoterapia , Microambiente Tumoral
8.
Mol Cancer ; 22(1): 198, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-38053093

RESUMEN

Tumor angiogenesis plays vital roles in the growth and metastasis of cancer. RNA methylation is one of the most common modifications and is widely observed in eukaryotes and prokaryotes. Accumulating studies have revealed that RNA methylation affects the occurrence and development of various tumors. In recent years, RNA methylation has been shown to play an important role in regulating tumor angiogenesis. In this review, we mainly elucidate the mechanisms and functions of RNA methylation on angiogenesis and progression in several cancers. We then shed light on the role of RNA methylation-associated factors and pathways in tumor angiogenesis. Finally, we describe the role of RNA methylation as potential biomarker and novel therapeutic target.


Asunto(s)
Neoplasias , Humanos , Metilación , Neoplasias/genética , Neoplasias/patología , Neovascularización Patológica/genética , ARN/genética
9.
Cell Death Dis ; 14(10): 679, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833255

RESUMEN

Cancer immunotherapy has transformed traditional treatments, with immune checkpoint blockade being particularly prominent. However, immunotherapy has minimal benefit for patients in most types of cancer and is largely ineffective in some cancers (such as pancreatic cancer and glioma). A synergistic anti-tumor response may be produced through the combined application with traditional tumor treatment methods. Radiotherapy (RT) not only kills tumor cells but also triggers the pro-inflammatory molecules' release and immune cell infiltration, which remodel the tumor microenvironment (TME). Therefore, the combination of RT and immunotherapy is expected to achieve improved efficacy. In this review, we summarize the effects of RT on cellular components of the TME, including T cell receptor repertoires, different T cell subsets, metabolism, tumor-associated macrophages and other myeloid cells (dendritic cells, myeloid-derived suppressor cells, neutrophils and eosinophils). Meanwhile, non-cellular components such as lactate and extracellular vesicles are also elaborated. In addition, we discuss the impact of different RT modalities on tumor immunity and issues related to the clinical practice of combination therapy.


Asunto(s)
Glioma , Células Supresoras de Origen Mieloide , Humanos , Microambiente Tumoral , Inmunoterapia , Glioma/metabolismo , Células Mieloides , Células Supresoras de Origen Mieloide/metabolismo
11.
Immunology ; 170(3): 301-318, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37317655

RESUMEN

According to reports, gut microbiota and metabolites regulate the intestinal immune microenvironment. In recent years, an increasing number of studies reported that bile acids (BAs) of intestinal flora origin affect T helper cells and regulatory T cells (Treg cells). Th17 cells play a pro-inflammatory role and Treg cells usually act in an immunosuppressive role. In this review, we emphatically summarised the influence and corresponding mechanism of different configurations of lithocholic acid (LCA) and deoxycholic acid (DCA) on intestinal Th17 cells, Treg cells and intestinal immune microenvironment. The regulation of BAs receptors G protein-coupled bile acid receptor 1 (GPBAR1/TGR5) and farnesoid X receptor (FXR) on immune cells and intestinal environment are elaborated. Furthermore, the potential clinical applications above were also concluded in three aspects. The above will help researchers better understand the effects of gut flora on the intestinal immune microenvironment via BAs and contribute to the development of new targeted drugs.


Asunto(s)
Microbioma Gastrointestinal , Receptores Acoplados a Proteínas G/metabolismo , Intestinos , Ácidos y Sales Biliares
12.
Mol Cancer ; 22(1): 58, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36941614

RESUMEN

In recent years, tumor immunotherapy has made significant progress. However, tumor immunotherapy, particularly immune checkpoint inhibitors (e.g., PD-1/PD-L1 inhibitors), benefits only a tiny proportion of patients in solid cancers. The tumor microenvironment (TME) acts a significant role in tumor immunotherapy. Studies reported that tumor-associated macrophages (TAMs), as one of the main components of TME, seriously affected the therapeutic effect of PD-1/PD-L1 inhibitors. In this review, we analyzed TAMs from epigenetic and single-cell perspectives and introduced the role and mechanisms of TAMs in anti-programmed death protein 1(anti-PD-1) therapy. In addition, we summarized combination regimens that enhance the efficacy of tumor PD-1/PD-L1 inhibitors and elaborated on the role of the TAMs in different solid cancers. Eventually, the clinical value of TAMs by influencing the therapeutic effect of tumor PD-1/PD-L1 inhibitors was discussed. These above are beneficial to elucidate poor therapeutic effect of PD-1/PD-L1 inhibitors in solid tumors from the point of view of TAMs and explore the strategies to improve its objective remission rate of solid cancers.


Asunto(s)
Neoplasias , Macrófagos Asociados a Tumores , Humanos , Macrófagos Asociados a Tumores/metabolismo , Antígeno B7-H1/metabolismo , Inhibidores de Puntos de Control Inmunológico , Macrófagos/metabolismo , Neoplasias/tratamiento farmacológico , Inmunoterapia , Microambiente Tumoral
13.
Signal Transduct Target Ther ; 8(1): 124, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36922504

RESUMEN

Exosome is a subgroup of extracellular vesicles, which has been serving as an efficient therapeutic tool for various diseases. Engineered exosomes are the sort of exosomes modified with surface decoration and internal therapeutic molecules. After appropriate modification, engineered exosomes are able to deliver antitumor drugs to tumor sites efficiently and precisely with fewer treatment-related adverse effects. However, there still exist many challenges for the clinical translation of engineered exosomes. For instance, what sources and modification strategies could endow exosomes with the most efficient antitumor activity is still poorly understood. Additionally, how to choose appropriately engineered exosomes in different antitumor therapies is another unresolved problem. In this review, we summarized the characteristics of engineered exosomes, especially the spatial and temporal properties. Additionally, we concluded the recent advances in engineered exosomes in the cancer fields, including the sources, isolation technologies, modification strategies, and labeling and imaging methods of engineered exosomes. Furthermore, the applications of engineered exosomes in different antitumor therapies were summarized, such as photodynamic therapy, gene therapy, and immunotherapy. Consequently, the above provides the cancer researchers in this community with the latest ideas on engineered exosome modification and new direction of new drug development, which is prospective to accelerate the clinical translation of engineered exosomes for cancer-targeted therapy.


Asunto(s)
Exosomas , Vesículas Extracelulares , Neoplasias , Humanos , Exosomas/genética , Exosomas/patología , Estudios Prospectivos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Inmunoterapia
14.
Mol Cancer ; 22(1): 29, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36759842

RESUMEN

In recent years, breakthroughs have been made in tumor immunotherapy. However, tumor immunotherapy, particularly anti-PD-1/PD-L1 immune checkpoint inhibitors, is effective in only a small percentage of patients in solid cancer. How to improve the efficiency of cancer immunotherapy is an urgent problem to be solved. As we all know, the state of the tumor microenvironment (TME) is an essential factor affecting the effectiveness of tumor immunotherapy, and the cancer-associated fibroblasts (CAFs) in TME have attracted much attention in recent years. As one of the main components of TME, CAFs interact with cancer cells and immune cells by secreting cytokines and vesicles, participating in ECM remodeling, and finally affecting the immune response process. With the in-depth study of CAFs heterogeneity, new strategies are provided for finding targets of combination immunotherapy and predicting immune efficacy. In this review, we focus on the role of CAFs in the solid cancer immune microenvironment, and then further elaborate on the potential mechanisms and pathways of CAFs influencing anti-PD-1/PD-L1 immunotherapy. In addition, we summarize the potential clinical application value of CAFs-related targets and markers in solid cancers.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias , Humanos , Antígeno B7-H1/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Citocinas/metabolismo , Neoplasias/metabolismo , Inmunoterapia , Microambiente Tumoral
15.
J Exp Clin Cancer Res ; 42(1): 46, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36793126

RESUMEN

BACKGROUND: Exosome is crucial mediator and play an important role in tumor angiogenesis. Tip cell formation is a prerequisite for persistent tumor angiogenesis which causes tumor metastasis. However, the functions and underlying mechanisms of tumor cell-derived exosomes in angiogenesis and tip cell formation remain less understood. METHODS: Exosomes derived from serum of colorectal cancer (CRC) patients with metastasis/non-metastasis and CRC cells were isolated by ultracentrifugation. CircRNAs in these exosomes were analyzed by circRNA microarray. Then, exosomal circTUBGCP4 was identified and verified by quantitative real-time PCR (qRT-PCR) and in situ hybridization (ISH). Loss- and gain-of-function assays were performed to explore the effect of exosomal circTUBGCP4 on vascular endothelial cell tipping and colorectal cancer metastasis in vitro and in vivo. Mechanically, bioinformatics analysis, biotin-labeled circTUBGCP4/ miR-146b-3p RNA pulldown, RNA immunoprecipitation (RIP), and luciferase reporter assay were used to confirm the interaction among circTUBGCP4, miR-146b-3p, and PDK2. RESULTS: Here, we showed that exosomes derived from CRC cells enhanced vascular endothelial cell migration and tube formation via inducing filopodia formation and endothelial cell tipping. We further screened the upregulated circTUBGCP4 in serum of CRC patients with metastasis compared to non-metastasis. Silencing circTUBGCP4 expression in CRC cell-derived exosomes (CRC-CDEs) inhibited endothelial cell migration, tube formation, tip cell formation, and CRC metastasis. Overexpression of circTUBGCP4 had opposite results in vitro and in vivo. Mechanically, circTUBGCP4 upregulated PDK2 to activate Akt signaling pathway by sponging miR-146b-3p. Moreover, we found that miR-146b-3p could be a key regulator for vascular endothelial cell dysfunction. Exosomal circTUBGCP4 promoted tip cell formation and activated the Akt signaling pathway by inhibiting miR-146b-3p. CONCLUSIONS: Our results suggest that colorectal cancer cells generate exosomal circTUBGCP4, which causes vascular endothelial cell tipping to promote angiogenesis and tumor metastasis by activating Akt signaling pathway.


Asunto(s)
Neoplasias Colorrectales , Exosomas , MicroARNs , ARN Circular , Transducción de Señal , Humanos , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/patología , Células Endoteliales/metabolismo , Exosomas/metabolismo , MicroARNs/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Circular/genética
16.
Br J Cancer ; 128(5): 715-725, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36463323

RESUMEN

Cancer immunotherapy (CIT) has gained increasing attention and made promising progress in recent years, especially immune checkpoint inhibitors such as antibodies blocking programmed cell death 1/programmed cell death ligand 1 (PD-1/PD-L1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4). However, its therapeutic efficacy is only 10-30% in solid tumours and treatment sensitivity needs to be improved. The complex tissue environment in which cancers originate is known as the tumour microenvironment (TME) and the complicated and dynamic TME is correlated with the efficacy of immunotherapy. Ultrasound-targeted microbubble destruction (UTMD) is an emerging technology that integrates diagnosis and therapy, which has garnered much traction due to non-invasive, targeted drug delivery and gene transfection characteristics. UTMD has also been studied to remodel TME and improve the efficacy of CIT. In this review, we analyse the effects of UTMD on various components of TME, including CD8+ T cells, tumour-infiltrating myeloid cells, regulatory T cells, natural killer cells and tumour vasculature. Moreover, UTMD enhances the permeability of the blood-brain barrier to facilitate drug delivery, thus improving CIT efficacy in vivo animal experiments. Based on this, we highlight the potential of immunotherapy against various cancer species and the clinical application prospects of UTMD.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Animales , Microambiente Tumoral , Microburbujas , Inmunoterapia
17.
Elife ; 112022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36345721

RESUMEN

Molecular subtypes of colorectal cancer (CRC) are currently identified via the snapshot transcriptional profiles, largely ignoring the dynamic changes of gene expressions. Conversely, biological networks remain relatively stable irrespective of time and condition. Here, we introduce an individual-specific gene interaction perturbation network-based (GIN) approach and identify six GIN subtypes (GINS1-6) with distinguishing features: (i) GINS1 (proliferative, 24%~34%), elevated proliferative activity, high tumor purity, immune-desert, PIK3CA mutations, and immunotherapeutic resistance; (ii) GINS2 (stromal-rich, 14%~22%), abundant fibroblasts, immune-suppressed, stem-cell-like, SMAD4 mutations, unfavorable prognosis, high potential of recurrence and metastasis, immunotherapeutic resistance, and sensitive to fluorouracil-based chemotherapy; (iii) GINS3 (KRAS-inactivated, 13%~20%), high tumor purity, immune-desert, activation of EGFR and ephrin receptors, chromosomal instability (CIN), fewer KRAS mutations, SMOC1 methylation, immunotherapeutic resistance, and sensitive to cetuximab and bevacizumab; (iv) GINS4 (mixed, 10%~19%), moderate level of stromal and immune activities, transit-amplifying-like, and TMEM106A methylation; (v) GINS5 (immune-activated, 12%~24%), stronger immune activation, plentiful tumor mutation and neoantigen burden, microsatellite instability and high CpG island methylator phenotype, BRAF mutations, favorable prognosis, and sensitive to immunotherapy and PARP inhibitors; (vi) GINS6, (metabolic, 5%~8%), accumulated fatty acids, enterocyte-like, and BMP activity. Overall, the novel high-resolution taxonomy derived from an interactome perspective could facilitate more effective management of CRC patients.


Asunto(s)
Neoplasias Colorrectales , Proteínas Proto-Oncogénicas B-raf , Humanos , Proteínas Proto-Oncogénicas B-raf/metabolismo , Islas de CpG , Neoplasias Colorrectales/patología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Metilación de ADN , Inestabilidad de Microsatélites , Mutación , Proteínas Cromosómicas no Histona/metabolismo
18.
Front Immunol ; 13: 982040, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36059539

RESUMEN

Cell death is generally classified into two categories: regulated cell death (RCD) and accidental cell death (ACD). In particular, RCD is a kind of genetically controlled process, including programmed apoptotic death and programmed necrotic death. Pyroptosis, an inflammatory form of programmed necrotic death, causes inflammation in cells. The influence of pyroptosis on tumor is complicated. On the one hand, pyroptosis triggers antitumor response. On the other hand, pyroptosis may induce carcinogenesis. Pyroptosis is initiated by various factors, especially non-coding RNAs. In this review, we discuss the effects of ncRNAs on pyroptosis and the mechanisms by which ncRNAs initiate pyroptosis. Moreover, we introduce the influence of ncRNA on tumor resistance via pyroptosis. Additionally, we summarize how ncRNA-associated pyroptosis modulates the tumor microenvironment (TME) and thereafter triggers antitumor immune response. Finally, pyroptosis-related ncRNAs are promising diagnostic and immunotherapeutic biomarkers and therapeutic targets.


Asunto(s)
Neoplasias , Piroptosis , Apoptosis , Humanos , Necrosis , Neoplasias/genética , ARN no Traducido/genética , Microambiente Tumoral
19.
Front Immunol ; 13: 953405, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35958606

RESUMEN

The interplay between long non-coding RNAs (lncRNAs) and the Notch pathway involves a variety of malignancies. However, Notch-derived lncRNAs and their latent clinical significance remain elusive in colorectal cancer (CRC). In this study, we introduced a framework that could screen Notch-derived lncRNAs (named "NLncer") and ultimately identified 24 NLncers. To further explore the clinical significance of these NLncers, we performed LASSO and Cox regression in TCGA-CRC cohort (n = 584) and then retained six lncRNAs tightly associated with prognosis. The final model (termed "NLncS") was subsequently tested in GSE38832 (n = 122), GSE39582 (n = 573), and an in-house clinical cohort (n = 115). Ultimately, our NLncS model could serve as an independent risk factor and afford a robust performance for assessing the prognosis of CRC patients. Additionally, patients with high NLncS risk scores were characterized by upregulation of immune pathways, strong immunogenicity, abundant CD8 + T-cell infiltration, and potentially higher response rates to CTLA4 blockers, which turned out to be suitable for immunotherapy. Aiming at globally observing the characteristics of high-risk patients, somatic mutation and methylation modification analysis provide us with evidence at the genomic and transcriptomic levels. To facilitate the clinical transformability, we mined deeply into the sensitive compounds targeting high-risk individuals and identified dasatinib as a candidate agent for patients with a high Notch risk score. In conclusion, our NLncS model is a promising biomarker for optimizing the clinical management of CRC patients.


Asunto(s)
Neoplasias Colorrectales , ARN Largo no Codificante , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Pronóstico , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Microambiente Tumoral/genética
20.
Cell Death Dis ; 13(6): 539, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35676257

RESUMEN

Tumour immunity plays an important role in the development of cancer. Tumour immunotherapy is an important component of antitumour therapy. Exosomes, a type of extracellular vesicle, act as mediators of intercellular communication and molecular transfer and play an essential role in tumour immunity. Circular RNAs (circRNAs) are a new type of noncoding RNA that are enriched within exosomes. In this review, we describe the effects of exosomal circRNAs on various immune cells and the mechanisms of these effects, including macrophages, neutrophils, T cells, and Natural killer (NK) cells. Next, we elaborate on the latest progress of exosome extraction. In addition, the function of exosomal circRNAs as a potential prognostic and drug sensitivity marker is described. We present the great promise of exosomal circRNAs in regulating tumour immunity, predicting patient outcomes, and evaluating drug efficacy.


Asunto(s)
Exosomas , Vesículas Extracelulares , Neoplasias , Comunicación Celular/genética , Exosomas/genética , Humanos , Neoplasias/genética , ARN Circular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA