Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurology ; 102(4): e208013, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38315956

RESUMEN

BACKGROUND AND OBJECTIVES: Alzheimer disease (AD) is primarily associated with accumulations of amyloid plaques and tau tangles in gray matter, however, it is now acknowledged that neuroinflammation, particularly in white matter (WM), significantly contributes to the development and progression of AD. This study aims to investigate WM neuroinflammation in the continuum of AD and its association with AD pathologies and cognition using diffusion-based neuroinflammation imaging (NII). METHODS: This is a cross-sectional, single-center, retrospective evaluation conducted on an observational study of 310 older research participants who were enrolled in the Knight Alzheimer's Disease Research Center cohort. Hindered water ratio (HR), an index of WM neuroinflammation, was quantified by a noninvasive diffusion MRI method, NII. The alterations of NII-HR were investigated at different AD stages, classified based on CSF concentrations of ß-amyloid (Aß) 42/Aß40 for amyloid and phosphorylated tau181 (p-tau181) for tau. On the voxel and regional levels, the relationship between NII-HR and CSF markers of amyloid, tau, and neuroinflammation were examined, as well as cognition. RESULTS: This cross-sectional study included 310 participants (mean age 67.1 [±9.1] years), with 52 percent being female. Subgroups included 120 individuals (38.7%) with CSF measures of soluble triggering receptor expressed on myeloid cells 2, 80 participants (25.8%) with CSF measures of chitinase-3-like protein 1, and 110 individuals (35.5%) with longitudinal cognitive measures. The study found that cognitively normal individuals with positive CSF Aß42/Aß40 and p-tau181 had higher HR than healthy controls and those with positive CSF Aß42/Aß40 but negative p-tau181. WM tracts with elevated NII-HR in individuals with positive CSF Aß42/Aß40 and p-tau181 were primarily located in the posterior brain regions while those with elevated NII-HR in individuals with positive CSF Aß42/Aß40 and p-tau181 connected the posterior and anterior brain regions. A significant negative correlation between NII-HR and CSF Aß42/Aß40 was found in individuals with positive CSF Aß42/Aß40. Baseline NII-HR correlated with baseline cognitive composite score and predicted longitudinal cognitive decline. DISCUSSION: Those findings suggest that WM neuroinflammation undergoes alterations before the onset of AD clinical symptoms and that it interacts with amyloidosis. This highlights the potential value of noninvasive monitoring of WM neuroinflammation in AD progression and treatment.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Sustancia Blanca , Humanos , Femenino , Anciano , Masculino , Enfermedad de Alzheimer/patología , Estudios Transversales , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Estudios Retrospectivos , Proteínas tau , Enfermedades Neuroinflamatorias , Biomarcadores , Péptidos beta-Amiloides , Fragmentos de Péptidos
2.
J Vis Exp ; (195)2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37306431

RESUMEN

During normal pregnancy, the uterine smooth muscle, the myometrium, begins to have weak, uncoordinated contractions at late gestation to help the cervix remodel. In labor, the myometrium has strong, coordinated contractions to deliver the fetus. Various methods have been developed to monitor uterine contraction patterns to predict labor onset. However, the current techniques have limited spatial coverage and specificity. We developed electromyometrial imaging (EMMI) to noninvasively map uterine electrical activity onto the three-dimensional uterine surface during contractions. The first step in EMMI is to use T1-weighted magnetic resonance imaging to acquire the subject-specific body-uterus geometry. Next, up to 192 pin-type electrodes placed on the body surface are used to collect electrical recordings from the myometrium. Finally, the EMMI data processing pipeline is performed to combine the body-uterus geometry with body surface electrical data to reconstruct and image uterine electrical activities on the uterine surface. EMMI can safely and noninvasively image, identify, and measure early activation regions and propagation patterns across the entire uterus in three dimensions.


Asunto(s)
Mujeres Embarazadas , Contracción Uterina , Humanos , Embarazo , Femenino , Útero , Miometrio , Diagnóstico por Imagen
3.
Nat Commun ; 14(1): 1198, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36918533

RESUMEN

Electromyometrial imaging (EMMI) was recently developed to image the three-dimensional (3D) uterine electrical activation during contractions noninvasively and accurately in sheep. Herein we describe the development and application of a human EMMI system to image and evaluate 3D uterine electrical activation patterns at high spatial and temporal resolution during human term labor. We demonstrate the successful integration of the human EMMI system during subjects' clinical visits to generate noninvasively the uterine surface electrical potential maps, electrograms, and activation sequence through an inverse solution using up to 192 electrodes distributed around the abdomen surface. Quantitative indices, including the uterine activation curve, are developed and defined to characterize uterine surface contraction patterns. We thus show that the human EMMI system can provide detailed 3D images and quantification of uterine contractions as well as novel insights into the role of human uterine maturation during labor progression.


Asunto(s)
Trabajo de Parto , Embarazo , Femenino , Humanos , Animales , Ovinos , Electromiografía/métodos , Útero/diagnóstico por imagen , Útero/fisiología , Contracción Uterina/fisiología , Imagenología Tridimensional/métodos
4.
Front Endocrinol (Lausanne) ; 13: 1001538, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246931

RESUMEN

Objective: In 10% of term deliveries and 40% of preterm deliveries, the fetal membrane (FM) ruptures before labor. However, the ability to predict these cases of premature rupture of membranes (PROM) and preterm premature rupture of membranes (PPROM) is very limited. In this paper, our objective was to determine whether a prediction method based on T2 weighted magnetic resonance imaging (MRI) of the supra-cervical FM could predict PROM and PPROM. Methods: This prospective cohort study enrolled 77 women between the 28th and 37th weeks of gestation. Two indicators of fetal membrane defects, including prolapsed depth >5 mm and signal abnormalities, are investigated for our prediction. Fisher's exact test was used to determine whether prolapsed depth >5 mm and/or signal abnormalities were associated with PROM and PPROM. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were calculated for prolapsed depth >5 mm, signal abnormalities, and the combination of prolapsed depth >5 mm and signal abnormalities. Result: Among 12 women with PROM (5 preterm and 7 term, prior to labor onset), 9 had membrane prolapse >5 mm and 5 had FM signal abnormalities. Among 65 women with rupture of membranes at term, 2 had membrane prolapse >5 mm and 1 had signal abnormalities. By Fisher's exact test both indicators, membrane prolapse >5 mm and signal abnormalities, were associated with PROM (P<0.001, P<0.001) and PPROM (P=0.001, P<0.001). Additionally, membrane prolapse >5 mm, signal abnormalities, and the combination of the two indicators all demonstrated high specificity for predicting PROM (96.9%, 98.5%, and 100%, respectively) and PPROM (90.3%, 97.2%, and 100%, respectively). Conclusion: MRI can distinguish the supra-cervical fetal membrane in vivo and may be able to identify women at high risk of PPROM.


Asunto(s)
Rotura Prematura de Membranas Fetales , Membranas Extraembrionarias/diagnóstico por imagen , Membranas Extraembrionarias/patología , Femenino , Rotura Prematura de Membranas Fetales/diagnóstico por imagen , Rotura Prematura de Membranas Fetales/patología , Humanos , Recién Nacido , Imagen por Resonancia Magnética , Embarazo , Prolapso , Estudios Prospectivos
6.
Artículo en Inglés | MEDLINE | ID: mdl-35260470

RESUMEN

BACKGROUND AND OBJECTIVES: This study aims to quantify microglial activation in individuals with Alzheimer disease (AD) using the 18-kDa translocator protein (TSPO) PET imaging in the hippocampus and precuneus, the 2 AD-vulnerable regions, and to evaluate the association of baseline neuroinflammation with amyloidosis, tau, and longitudinal cognitive decline. METHODS: Twenty-four participants from the Knight Alzheimer Disease Research Center (Knight ADRC) were enrolled and classified into stable cognitively normal, progressor, and symptomatic AD groups based on clinical dementia rating (CDR) at 2 or more clinical assessments. The baseline TSPO radiotracer [11C]PK11195 was used to image microglial activation. Baseline CSF concentrations of Aß42, Aß42/Aß40 ratio, tau phosphorylated at position 181 (p-tau181), and total tau (t-tau) were measured. Clinical and cognitive decline were examined with longitudinal CDR and cognitive composite scores (Global and Knight ADRC-Preclinical Alzheimer Cognitive Composite [Knight ADRC-PACC] Score). RESULTS: Participants in the progressor and symptomatic AD groups had significantly elevated [11C]PK11195 standard uptake value ratios (SUVRs) in the hippocampus but not in the precuneus region. In the subcohort with CSF biomarkers (16 of the 24), significant negative correlations between CSF Aß42 or Aß42/Aß40 and [11C]PK11195 SUVR were observed in the hippocampus and precuneus. No correlations were observed between [11C]PK11195 SUVR and CSF p-tau181 or t-tau at baseline in those regions. Higher baseline [11C]PK11195 SUVR averaged in the whole cortical regions predicted longitudinal decline on cognitive tests. DISCUSSION: Microglial activation is increased in individuals with brain amyloidosis and predicts worsening cognition in AD. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that in patients with AD, higher baseline [11C]PK11195 SUVR averaged in the whole cortical regions was associated with longitudinal decline on cognitive tests.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Disfunción Cognitiva , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Amiloidosis/complicaciones , Amiloidosis/diagnóstico por imagen , Amiloidosis/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Humanos , Microglía/metabolismo , Receptores de GABA/metabolismo
7.
Front Big Data ; 5: 1080715, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36687770

RESUMEN

As one of the popular deep learning methods, deep convolutional neural networks (DCNNs) have been widely adopted in segmentation tasks and have received positive feedback. However, in segmentation tasks, DCNN-based frameworks are known for their incompetence in dealing with global relations within imaging features. Although several techniques have been proposed to enhance the global reasoning of DCNN, these models are either not able to gain satisfying performances compared with traditional fully-convolutional structures or not capable of utilizing the basic advantages of CNN-based networks (namely the ability of local reasoning). In this study, compared with current attempts to combine FCNs and global reasoning methods, we fully extracted the ability of self-attention by designing a novel attention mechanism for 3D computation and proposed a new segmentation framework (named 3DTU) for three-dimensional medical image segmentation tasks. This new framework processes images in an end-to-end manner and executes 3D computation on both the encoder side (which contains a 3D transformer) and the decoder side (which is based on a 3D DCNN). We tested our framework on two independent datasets that consist of 3D MRI and CT images. Experimental results clearly demonstrate that our method outperforms several state-of-the-art segmentation methods in various metrics.

8.
Am J Obstet Gynecol ; 224(1): 101.e1-101.e11, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32668204

RESUMEN

BACKGROUND: Cervical remodeling is an important aspect of birth timing. Before cervical ripening, the collagen fibers are arranged in a closely interweaved network, but during ripening, the fibers become disorganized and the cervix becomes more hydrated. To quantitatively measure cervical remodeling, we need a noninvasive method to monitor changes in cervical collagen fiber organization and hydration in vivo. OBJECTIVE: To use diffusion tensor imaging to image and quantify the spatial and temporal differences in cervical microstructure between normal early and late pregnancies. STUDY DESIGN: After institutional review board approval and consent, a group of healthy women in early pregnancy (22 patients at 12-14 weeks' gestation) and a group in late pregnancy (27 patients at 36-38 weeks' gestation) underwent magnetic resonance imaging on a Siemens MAGNETOM Vida 3 Tesla unit. Diffusion tensor imaging of the cervix in the axial plane was performed with a two-dimensional single-shot echo planar imaging diffusion-weighted sequence. In early and late pregnancy groups, the differences of the diffusion tensor imaging measures were compared between the subglandular zone and the outer stroma regions of the cervix. In addition, the diffusion tensor imaging measures were compared between the early and late pregnancy groups. Finally, for the late pregnancy group, the diffusion tensor imaging measures were compared between the primipara and multipara groups. RESULTS: Diffusion tensor imaging measures of microstructure significantly differed between the subglandular zone and outer stroma regions of the cervix in both early and late pregnancies. In the subglandular zone, fractional anisotropy was lower in the late pregnancy group than in the early pregnancy group (0.37 [0.34-0.42] vs 0.50 [0.43-0.58]; P<.0005), suggesting increased collagen fiber disorganization in this zone. In addition, mean diffusivity was higher in the late pregnancy group than in the early pregnancy group (1.84 [1.73-2.02] mm2/sec×10-3 vs 1.56 [1.42-1.69] mm2/sec×10-3; P=.001), suggesting increased hydration in the subglandular zone. In the outer stroma, neither fractional anisotropy (0.44 [0.40-0.50] vs 0.41 [0.37-0.43]; P=.095) nor mean diffusivity (2.09 [1.92-2.25] mm2/sec×10-3 vs 2.12 [2.04-2.24] mm2/sec×10-3; P=.269) significantly differed between early pregnancy and late pregnancy, suggesting insignificant temporal microstructural changes in this cervical zone. Diffusion tensor imaging measures did not significantly differ between cervixes from primiparous and multiparous women in late pregnancy. CONCLUSION: This in vivo study demonstrates that diffusion tensor imaging can noninvasively quantify the microstructural differences in collagen fiber organization and hydration in cervical subregions between early pregnancy and late pregnancy.


Asunto(s)
Cuello del Útero/diagnóstico por imagen , Ultrasonografía Prenatal , Adulto , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Embarazo , Primer Trimestre del Embarazo , Tercer Trimestre del Embarazo , Adulto Joven
9.
Front Physiol ; 11: 639, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32670086

RESUMEN

In approximately 8% of term births and 33% of pre-term births, the fetal membrane (FM) ruptures before delivery. In vitro studies of FMs after delivery have suggested the series of events leading to rupture, but no in vivo studies have confirmed this model. In this study, we used a three-dimensional constructive interference in steady state (3D-CISS) sequence to examine the FM at the cervical internal os zone during pregnancy; 18 pregnant women with one to three longitudinal MRI scans were included in this study. In 14 women, the FM appeared normal and completely intact. In four women, we noted several FM abnormalities including cervical funneling, chorioamniotic separation, and chorion rupture. Our data support the in vitro model that the FM ruptures according to a sequence starting with the stretch of chorion and amnion, then the separation of amnion from chorion, next the rupture of chorion, and finally the rupture of amnion ruptures. These findings hold great promise to help to develop an in vivo magnetic resonance imaging marker that improves examination of the FMs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...