Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Struct Biol ; 215(2): 107942, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36781028

RESUMEN

Small GTPase RhoA switches from GTP-bound state to GDP-bound state by hydrolyzing GTP, which is accelerated by GTPases activating proteins (GAPs). However, less study of RhoA structural dynamic changes was conducted during this process, which is essential for understanding the molecular mechanism of GAP dissociation. Here, we solved a RhoA structure in GDP-bound state with switch II flipped outward. Because lacking the intermolecular interactions with guanine nucleotide, we proposed this conformation of RhoA could be an intermediate after GAP dissociation. Further molecular dynamics simulations found the conformational changes of switch regions are indeed existing in RhoA and involved in the regulation of GAP dissociation and GEF recognition. Besides, the guanine nucleotide binding pocket extended to switch II region, indicating a potential "druggable" cavity for RhoA. Taken together, our study provides a deeper understanding of the dynamic properties of RhoA switch regions and highlights the direction for future drug development.


Asunto(s)
Nucleótidos de Guanina , Simulación de Dinámica Molecular , Conformación Proteica , Guanosina Trifosfato/química
2.
Bioorg Med Chem Lett ; 73: 128883, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35820623

RESUMEN

Glutamate oxaloacetate transaminase 1 (GOT1) plays a key role in aberrant glutamine metabolism. GOT1 suppression can arrest tumor growth and prevent the development of cancer, indicating GOT1 as a potential anticancer target. Reported GOT1 inhibitors, on the other hand, are quite restricted. Here, we developed and optimized a coupling reaction-based high-throughput screening assay for the discovery of GOT1 inhibitors. By using this screening assay, we found that the cardiovascular drug hydralazine hydrochloride inhibited GOT1 catalytic activity, with an IC50 of 26.62 ± 7.45 µM, in a non-competitive and partial-reversible manner. In addition, we determined the binding affinity of hydralazine hydrochloride to GOT1, with a Kd of 16.54 ± 8.59 µM, using a microscale thermophoresis assay. According to structure-activity relationship analysis, the inhibitory activity of hydralazine hydrochloride is mainly derived from its hydrazine group. Furthermore, it inhibits the proliferation of cancer cells MCF-7 and MDA-MB-468 with a slight inhibitory effect compared to other tested cancer cells, highlighting GOT1 as a promising therapeutic target for the treatment of breast cancer.


Asunto(s)
Aspartato Aminotransferasa Citoplasmática , Ensayos Analíticos de Alto Rendimiento , Aspartato Aminotransferasa Citoplasmática/metabolismo , Aspartato Aminotransferasa Citoplasmática/farmacología , Línea Celular Tumoral , Proliferación Celular , Hidralazina/farmacología
3.
Acta Pharmacol Sin ; 43(2): 470-482, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33850276

RESUMEN

Aerobic glycolysis, also known as the Warburg effect, is a hallmark of cancer cell glucose metabolism and plays a crucial role in the activation of various types of immune cells. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) catalyzes the conversion of D-glyceraldehyde 3-phosphate to D-glycerate 1,3-bisphosphate in the 6th critical step in glycolysis. GAPDH exerts metabolic flux control during aerobic glycolysis and therefore is an attractive therapeutic target for cancer and autoimmune diseases. Recently, GAPDH inhibitors were reported to function through common suicide inactivation by covalent binding to the cysteine catalytic residue of GAPDH. Herein, by developing a high-throughput enzymatic screening assay, we discovered that the natural product 1,2,3,4,6-penta-O-galloyl-ß-D-glucopyranose (PGG) is an inhibitor of GAPDH with Ki = 0.5 µM. PGG blocks GAPDH activity by a reversible and NAD+ and Pi competitive mechanism, suggesting that it represents a novel class of GAPDH inhibitors. In-depth hydrogen deuterium exchange mass spectrometry (HDX-MS) analysis revealed that PGG binds to a region that disrupts NAD+ and inorganic phosphate binding, resulting in a distal conformational change at the GAPDH tetramer interface. In addition, structural modeling analysis indicated that PGG probably reversibly binds to the center pocket of GAPDH. Moreover, PGG inhibits LPS-stimulated macrophage activation by specific downregulation of GAPDH-dependent glucose consumption and lactate production. In summary, PGG represents a novel class of GAPDH inhibitors that probably reversibly binds to the center pocket of GAPDH. Our study sheds new light on factors for designing a more potent and specific inhibitor of GAPDH for future therapeutic applications.


Asunto(s)
Gliceraldehído-3-Fosfato Deshidrogenasas/antagonistas & inhibidores , Taninos Hidrolizables/farmacología , Animales , Evaluación Preclínica de Medicamentos/métodos , Glucosa/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/antagonistas & inhibidores , Humanos , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Ácido Láctico/metabolismo , Espectroscopía de Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Compuestos Organometálicos , Reacción en Cadena en Tiempo Real de la Polimerasa
4.
Bioorg Med Chem Lett ; 30(22): 127598, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-33011288

RESUMEN

SET and MYND domain-containing protein 2 (SMYD2), a lysine methyltransferase, is reported to catalyze the methylation of lysine residues on histone and non-histone proteins. As a potential target for cancer therapy, there are several SMYD2 inhibitors are reported, LLY-507 as a cell-active inhibitor exhibits submicromolar potency against SMYD2 in several cancer cell lines. To know which structural fragment of LLY-507 is suitable for chemical modification, three sites are chosen for structure-activity relationship studies (SARs). Among our focused library, compounds 43 and 44 with amide link on site C showed reasonably improved potency indicating that modification on this fragment is more flexible and introduction of electrophilic warheads in this position might provide lysine-targeting covalent inhibitors for SMYD2.


Asunto(s)
Antineoplásicos/farmacología , Benzamidas/farmacología , Inhibidores Enzimáticos/farmacología , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Pirrolidinas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Benzamidas/síntesis química , Benzamidas/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Estructura Molecular , Pirrolidinas/síntesis química , Pirrolidinas/química , Relación Estructura-Actividad
5.
Bioorg Med Chem Lett ; 30(22): 127480, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32882416

RESUMEN

CBP bromodomain could recognize acetylated lysine and function as transcription coactivator to regulate transcription and downstream gene expression. Furthermore, CBP has been shown to be related to many human malignancies including acute myeloid leukemia. Herein, we identified DC-CPin734 as a potent CBP bromodomain inhibitor with a TR-FRET IC50 value of 19.5 ± 1.1 nM and over 400-fold of selectivity against BRD4 bromodomains through structure based rational drug design guided iterative chemical modification endeavoring to discover optimal tail-substituted tetrahydroquinolin derivatives. Moreover, DC-CPin734 showed potent inhibitory activity to AML cell line MV4-11 with an IC50 value of 0.55 ± 0.04 µM, and its cellular on-target effects were further evidenced by c-Myc downregulation results. In summary, DC-CPin734 showing good potency, selectivity and anti AML activity could serve as a potent and selective in vitro and in vivo probe of CBP bromodomain and a promising lead compound for future drug development.


Asunto(s)
Antineoplásicos/farmacología , Proteína de Unión a CREB/antagonistas & inhibidores , Quinolinas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proteína de Unión a CREB/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Quinolinas/síntesis química , Quinolinas/química , Relación Estructura-Actividad
6.
Adv Sci (Weinh) ; 7(14): 2000098, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32714746

RESUMEN

The Rho family GTPases are crucial drivers of tumor growth and metastasis. However, it is difficult to develop GTPases inhibitors due to a lack of well-characterized binding pockets for compounds. Here, through molecular dynamics simulation of the RhoA protein, a groove around cysteine 107 (Cys107) that is relatively well-conserved within the Rho family is discovered. Using a combined strategy, the novel inhibitor DC-Rhoin is discovered, which disrupts interaction of Rho proteins with guanine nucleotide exchange factors (GEFs) and guanine nucleotide dissociation inhibitors (GDIs). Crystallographic studies reveal that the covalent binding of DC-Rhoin to the Cys107 residue stabilizes and captures a novel allosteric pocket. Moreover, the derivative compound DC-Rhoin04 inhibits the migration and invasion of cancer cells, through targeting this allosteric pocket of RhoA. The study reveals a novel allosteric regulatory site within the Rho family, which can be exploited for anti-metastasis drug development, and also provides a novel strategy for inhibitor discovery toward "undruggable" protein targets.

7.
Bioorg Chem ; 101: 103991, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32559581

RESUMEN

CREB-binding protein (CBP) is a large multi-domain protein containing a HAT domain catalyzing transacetylation and a bromodomain responsible for acetylated lysine recognition. CBPs could act as transcription co-activators to regulate gene expression and have been shown to play a significant role in the development and progression of many cancers. Herein, through in silico screening two hit compounds with tetrahydroquinolin methyl carbamate scaffold were discovered, among which DC-CPin7 showed an in vitro inhibitory activity with the TR-FRET IC50 value of 2.5 ± 0.3 µM. We obtained a high-resolution co-crystal structure of the CBP bromodomain in complex with DC-CPin7 to guide following structure-based rational drug design, which yielded over ten DC-CPin7 derivatives with much higher potency, among which DC-CPin711 showed approximately 40-fold potency compared with hit compound DC-CPin7 with an in vitro TR-FRET IC50 value of 63.3 ± 4.0 nM. Notably, DC-CPin711 showed over 150-fold selectivity against BRD4 bromodomains. Moreover, DC-CPin711 showed micromolar level of anti-leukemia proliferation through G1 phase cell cycle arrest and cell apoptosis. In summary, through a combination of computational and crystal-based structure optimization, DC-CPin711 showed potent in vitro inhibitory activities to CBP bromodomain with a decent selectivity towards BRD4 bromodomains and good cellular activity to leukemia cells, which could further be applied to related biological and translational studies as well as serve as a lead compound for future development of potent and selective CBP bromodomain inhibitors.


Asunto(s)
Proteína de Unión a CREB/antagonistas & inhibidores , Dominios Proteicos/efectos de los fármacos , Quinolinas/química , Quinolinas/farmacología , Proteína de Unión a CREB/química , Cristalografía por Rayos X , Diseño de Fármacos , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Humanos , Leucemia/patología , Quinolinas/síntesis química , Relación Estructura-Actividad
8.
Acta Pharmacol Sin ; 41(2): 286-292, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31253937

RESUMEN

The cAMP-responsive element binding protein (CREB) binding protein (CBP) and adenoviral E1A-binding protein (P300) are two closely related multifunctional transcriptional coactivators. Both proteins contain a bromodomain (BrD) adjacent to the histone acetyl transferase (HAT) catalytic domain, which serves as a promising drug target for cancers and immune system disorders. Several potent and selective small-molecule inhibitors targeting CBP BrD have been reported, but thus far small-molecule inhibitors targeting BrD outside of the BrD and extraterminal domain (BET) family are especially lacking. Here, we established and optimized a TR-FRET-based high-throughput screening platform for the CBP BrD and acetylated H4 peptide. Through an HTS assay against an in-house chemical library containing 20 000 compounds, compound DC_CP20 was discovered as a novel CBP BrD inhibitor with an IC50 value of 744.3 nM. This compound bound to CBP BrD with a KD value of 4.01 µM in the surface plasmon resonance assay. Molecular modeling revealed that DC_CP20 occupied the Kac-binding region firmly through hydrogen bonding with the conserved residue N1168. At the celluslar level, DC_CP20 dose-dependently inhibited the proliferation of human leukemia MV4-11 cells with an IC50 value of 19.2 µM and markedly downregulated the expression of the c-Myc in the cells. Taken together, the discovery of CBP BrD inhibitor DC_CP20 provides a novel chemical scaffold for further medicinal chemistry optimization and a potential chemical probe for CBP-related biological function research. In addition, this inhibitor may serve as a promising therapeutic strategy for MLL leukemia by targeting CBP BrD protein.


Asunto(s)
Antineoplásicos/farmacología , Proteína de Unión a CREB/antagonistas & inhibidores , Ensayos Analíticos de Alto Rendimiento , Leucemia/tratamiento farmacológico , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Sitios de Unión , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas/métodos , Transferencia Resonante de Energía de Fluorescencia , Humanos , Concentración 50 Inhibidora , Leucemia/patología , Modelos Moleculares , Dominios Proteicos , Bibliotecas de Moléculas Pequeñas
9.
Am J Nephrol ; 51(1): 1-10, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31694015

RESUMEN

BACKGROUND: Inflammation plays an important role in polycystic kidney disease (PKD). Cordyceps sinensis, a prized -Chinese medicinal herb, exerts anti-tumor, anti-inflammatory and anti-metastatic effects and benefits patients with kidney diseases. The aim of this study was to test the efficacy of FTY720, an immunosuppressant derived from C. sinensis, in a rat cystic kidney disease model, and explore its underlining mechanism. METHODS: Male wild type and Cy/+ Han:SPRD rats were treated with FTY720 at 3 and 10 mg/kg/day for 5 weeks and 12 weeks by gavage. Blood and kidney were collected for functional, morphological, RNA, and protein analysis. RESULTS: Inflammation is activated in Cy/+ Han:SPRD rats. Inflammatory cytokines including interleukin 6 and tumor necrosis factor alpha were upregulated and inflammation-related pathways were activated, such as nuclear factor κB and signal transducer and activator of transcription 3 (STAT3) pathways. Furthermore, the bioactive sphingolipid mediator sphingosine-1-phosphate (S1P), a regulator of inflammation, was accumulated in the Cy/+ Han:SPRD rats. FTY720 significantly reduced cyst growth and delayed disease progression by reducing the accumulation of S1P, thereby inhibiting inflammatory responses. CONCLUSION: FTY720 treatment reduced the expression of inflammatory cytokines and attenuated the activation of NK-κB and STAT3 pathways in Cy/+ Han:SPRD rats. It suggests that FTY720 may serve as a therapeutic agent for clinical autosomal dominant PKD treatment.


Asunto(s)
Clorhidrato de Fingolimod/uso terapéutico , Inmunosupresores/uso terapéutico , Enfermedades Renales Poliquísticas/tratamiento farmacológico , Moduladores de los Receptores de fosfatos y esfingosina 1/uso terapéutico , Animales , Masculino , Ratas , Resultado del Tratamiento
10.
Bioorg Med Chem Lett ; 27(9): 2003-2009, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28347667

RESUMEN

As an epigenetic reader, BRD4 regulates the transcription of important downstream genes that are essential for the survival of tumor cells. Small molecular inhibitors targeting the first bromodomain of BRD4 (BRD4-BD1) have showed promising potentials in the therapies of BRD4-related cancers. Through AlphaScreen-based high-throughput screening assay, a novel small molecular inhibitor was identified, and named DCBD-005, which inhibited the binding between BRD4-BD1 and acetylated lysines with an IC50 value of 0.81±0.03µM. The compound DCBD-005 effectively inhibited the viability, caused cell cycle arrest, and induced apoptosis in human leukemia MV4-11 cells. Moreover, the crystal structure of compound DCBD-005 with the BRD4-BD1 was determined at 1.72Å resolution, which revealed the binding mechanism of the leading compound, and also provided solid basis for further structure-based optimization. These results indicated that this novel BRD4-BD1 inhibitor DCBD-005 is promising to be developed into a drug candidate in the treatment of BRD4-related diseases.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Leucemia/tratamiento farmacológico , Proteínas Nucleares/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Factores de Transcripción/antagonistas & inhibidores , Proteínas de Ciclo Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Ensayos Analíticos de Alto Rendimiento , Humanos , Leucemia/metabolismo , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...